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Abstract — This paper presents Space Division
Multiplexing (SDM) as a technology to satisfy the user
demand for ever higher bit rates in wirelessLocd area
network technology. SDM uses multiple transmit and
receve aitennas to increase bit rate propationaly,
without reducing range, delay spread tolerance and
spedrum occupancy. The optimal SDM recever is the
maximum likelihood decoder, which has the problem
that its computational complexity is exponential in the
number of antennas. This paper discusses complexity
reduction, looks at existing, approximate dgorithms
and propases new, exact algorithms. The Symbal Error
rate performance and the computational complexity are
compared and discussd.

. Introduction

The development of wireless Local Area Network
technology is driven primarily by an ever-increasing
need for user bandwidth and system cgpadty.
Traditionally, higher bit rates have been obtained using
larger modulation constellations and higher symbad
rates, resulting in a larger signal bandwidth. Equalizers
oo OFDM (Orthogona  Frequency Division
Multiplexing) are employed to combat the increased
inter-symbol  interference  caised by multi-path
propagation. The problems aswciated with this
approach are:

+ Large bandwidths are mostly available in higher
frequency bands. As free space signal loss
deaeases inversely propational with carier
frequency, the link budget is tighter than for lower
frequencies. In addition, high frequency RF
circuitry is more costly and less power efficient.

= Since more hits per second are transmitted, Ey/Ny
deaeases, reducing the link budget even more.

= Higher signaling rates imply higher sensitivity to
inter-symboal interference (1Sl).

Space divison Multiplexing (SDM) [3] where
information is transmitted and receéved over severd
transmit antennas and receéve antennas in paralé,
avoids those problems.

=« Capadty gain can be redized in existing bands.
Thus there is no additiona free space loss, and
cost efficient RF designs can be reused.

= Therecaver diversity order is equal to the number
of recave aitennas [1]. As antennas are alded, the
SNR gain compensates for the lossin E,/Ny caused
by the fad that the available energy is be divided
over multi ple transmitters.

% As the signaling rate remains the same, there is no
additional ISl (in fad delay spread robustness
increases[2])

The priceisin the alditional RF circuitry (of which parts,
such as locd oscill ators can be shared), and higher signal
processng complexity. This paper evaluates complexity
and propases methods to reduceit.

We wmnsider a ommunicaion system, which transmits
symbds at discrete times. If M and N denote the number
transmit and recdve antennas. The system is described by:

X=Hs+n D

where s is the M-dimensional transmit vedor, ead
element of which is chosen from a (complex-valued)
constellation, H is the NxM complex, random channel
matrix and n is an N-dimensional complex AWGN vedor.
We asume Rayleigh flat fading (see[2] for extension to
the cae of frequency seledive fading) for eat element of
H, refleding arich-scatered, indoar radio environment.

We aswume that the channel matrix is known by the
recaver and remains constant over the duration of the data
padket. The training phase, during which the recever
leansH, is outside the scope of this paper.

II.Optimal Recaver Algorithm

Reference [3] estimates the transmitted symbol by
multiplication of x by the Moore-Penrose pseudo-inverse
of the channel matrix. An improved algorithm is to use
MMSE (Minimum Mean Squared Error) estimator that
would be optimal if s was a ntinuous, rather than a
discrete-valued vedor. A further improvement, which isto
use dedsion fealbadk, is described as well. The best
element (with smallest estimated error) of the transmitted
vedor is computed and dliced, i.e. mapped to one of its
possble discrete values. The recaved vedor x is then
compensated for this dedsion, and the next best element is
deooded, and so on, until a complete estimate of the
transmitted vector, S is obtained. These methods have in
common that they have a ©mputational complexity of
O(M® and they achieve a recéver diversity of order
N-M+1 This implies that the number of recave
antennas must be eual or greaer than the number of
transmit antennas for this communication system to work.

Reference [2] derives the optimal receaver, which is a
maximum likelihood cetedor (MLD). Given the receved
symbal vedor X, the optimal recever algorithm optimizes,
for al posdble transmitted signals s, the cnditional
probability Pr{s |x}. The vedor which maximizes this
probabili ty, is given by:

é:argmiin [x - Hsy| 2



In [1] it is shown that this detedor redizes order N
recaver diversity, independent of the number of
transmitter antennas, M. If c¢ is the number of
constellation points, there ae c" different transmit
vedors §. The maximum likelihood detedor multiplies
5 by the known channel matrix and then cdculates the
Euclidean distance from the recéved vedor. Thus, the
complexity of the maximum likelihood deaoder is
exponential in the number of transmit antennas, O(c").

The question that we will addressin this paper is how
we @n reduce the complexity of the MLD algorithm,
without compromising its recaver performance.

[ll.  Reduced complexity MLD
By rewriting (2) as

x-FH, s, ®

S=argmin
' js0

where H; is the j-th column of H, and s; is the j-th
component of vedor s, and if the components of S

are etimated one after the order, it is ®en that the
MLD algorithm is related to sequence estimation. The
MLD problem can be visualized as a treg as $own in
figure 1 which depicts a simple deading example for
M=2. On the horizontal axis is t=0,1,2, the
deading step, while the verticd axis represents n(t),
which is defined as the distance between x and the
partial estimate of the recaved vedor after t steps:
t
X-TH, s (4)

jel

nt) =

In the figure, it is assumed that BPSK (Binary Phase
Shift Keying) modulation isused, i.e. 5 & {-1,+1} and
c=2. Thisis why every node has two kranches, i.e. 2
sub-nodes. In the example the maximum likelihood
estimate of s, which minimizes n(M), is (+1,-1)"

The cmmputational effort of an exhaustive eval uation of
the deaoding tree ca be reduced by using well known
maximum likelihood sequence estimation techniques,
such as Fano's algorithm, stadk decoding or "retain K
best paths' ("K-best" for short). See[4] and [5] for an
overview of various decoding methods and their
relative performance axd computational and storage
complexity.

At each step t, the K-best agorithm has a list of K
nodes in the tree For eah node in the list, the
algorithm cdculates the norms of its sub-nodes
acordingto (4). Of the ¢c-K resulting rorms, the K best
are put in the list and the corresponding nodes becme
the new survivors. The wmplexity of this algorithm is
linear in M. It has the alditional advantage of a
convenient implementation since its processng time is
constant.

These dgorithms only approximate a true maximum
likelihood detedor. In the example of figure 1, the
1-best algorithm would find the corred s corredly.

However, if the branches of the tree would cross eat
other, this algorithm would make adeaoding error.

Intuitively it makes ense to make the dgorithm greedy by
sorting the clumns of H in descending order of their
norm. Thus, in the branches close to the roat, the largest
strides are made, which makes the probability that
branches cross further down the tree smaller. Hence, it is
expeded that a K-best would introduce fewer errors.

Simulation results, comparing K-best decoding with
exhaustive decoding are given in sedion VI.

IV. Exact MLD: survivor algorithm

We try to reduce the MLD recever complexity without
resorting to approximation, by exploiting the N-
dimensional geometry of the problem as well as the
freedom of choaosing the order in which to estimate the
components of s. The simplest algorithm (cdled Survivor)
finds, for a partia s estimate, of which only the first t
components (sy,..., ) are known, a best case and worst
case etimate of n(M), which is the distance between x and
the estimated recave vedor.

In eadr node we have apartially estimated receve vedor:
y= EH Sy (%)

We will refer to y as the node location. An upper bound
on the distances from x corresponding to al possble
values of the remaining components (S.y,-.., Sw) iS when
al remaining H-columns (Hy,...,Hy_4) are dl aligned and
point exadly in the diredion of x. The worst case distance
occurs when all remaining columns of are digned but
point away from x, which gves a lower bound. The
distances between x and fina estimated recave vedor are
in the interval:

be-vle 3 R ©

The Survivor agorithm starts with recdved vedor X,
computes node locations y for every possible value of s;
and computes the interval in (6). Thisis $own in figure 2.
The y vedors are H; and -H,, for 5 = +1 and -1,
respedively. The best case vedor b; has a length equal to
that of the remaining H columns, ||H|| in this case, and is
pointing in the diredion of x. The worst case vedor w; has
the same length, but is pointing oppaite diredion. The
worst and best case distances are equal to |jx-b4|| and
[IX-ws4]|, and are cdculated acoordingto (6). The vedors b,
and w, are the best and worst case vedor for the second
node locaion, -H;.

The dgorithm continues with s, and steps through all
components of s sequentially to construct the full
deooding tree However, at ead step t, nodes whose best
case distance is larger than the worst case distance of any
other node can be diminated. All nodes in the sub-trees of
eliminated nodes neal not be evaluated since they would
give adistance from x which can never be better than that
from the surviving rodes. This is illustrated in figure 5,
which shows an example where & a particular step t, two



nodes can be diminated. It is expeded that non-
overlapping do accur so that only part of the node
needs to be eauated, thus reducing coding
complexity. Note that the eventual complexity of this
method depends on the communication channel —
both the values of the dements of channel matrix H
and noise vedor n.

V.QR survivor MLD

An advanced version of this algorithm, cdled QR1 is
based on the QR-decomposition. We gply a unitary
coordinate transform, to upper-triangularize H. It is
well-known that H can be fadored as H =QR,
provided that H has rank M:

R=Q*H (7)

Here R and H are both NxM matrices and Q* is an
NN matrix. Basicdly, Q is an orthonormal basis of
the vedor space spanned by H, and R is upper
triangular. Q can be obtained from H using Gram-
Schmidt orthogonali zaion, or equivalent, computation-
aly more stable methods involving a series of
Householder or Givens rotations [6]. Since Q is
unitary, Q'sinverse is equal to its conjugate transpose
(Q* = QY. Eacth receéved x is transformed to
orthonormal coordinate system acardingto:

X'= Q*.X (8)

The problem is now represented in a cordinate system
where we can better bound the best case and worst case
distance Thisis because the dimension of the wlumns
of R (i.e. H represented in the orthonormal system) is
reduced by one & the dgorithms descends deeper into
thetree

Consider an example for the cae N=M. We asume
that the wlumns of H have been sorted acording to
their lengths. Then Q is determined, inverted
(transpased and conjugated) and used to oktain R and
X'. R is upper triangular, and its columns are still sorted
acording to their length, since multiplication by
unitary matrix Q* is alength-preserving. We start with
the leftmost columns of R (which has no zeroes) and
caculate n(1), for the c posshble values of s, acording
to (4). The dedsion which paths survive is made &
with the Survivor algorithm.

For the next step, t = 2, we make use of the fad that the
remaining columns of R,...,Ry span a hyperplane of
dimension M-1. Shift this plane by adding an offset .
Now we the best and worst case X' estimates must also
lie within this difted hyperplane. The best case
estimate is now made by assuming that all remaining
R; vedors point in the diredion of the projection of x'
on the hyperplane, as opposed to the diredion of x'
itself, as in the Survivor algorithm. The worst case
estimates are made by asauming that the remaining R;
vedors point away from the projedion of x' on the
hyperplane.

This principle isillustrated in figure 3, which considers
the same eample & in figure 2. The wmordinate

transform, in this case is a rotation, which upper-
triangularizes R, so that R, is horizontal. The receave
vedor x has been rotated by the same angle, giving x'. The
y vedors after one step are R; and -R;. The best case
estimates for the first y value, is b,, the projedion of x' on
the hyperplane y + AR,. If we define diredion vedor z to
be the diff erence vedor between the projedion of X' and y,
then the best case vedor is given by

z . M,
p-{ig 2RI = 2R
z otherwise

The "otherwise ase" of this equation deds with the
situation where the sum of lengths of the remaining R
columns overshoats the projedion of x'. The norm of b
gives the best case bound. w; is the worst case vedor,
which lies within the hyper plane, but points in the
oppasite diredion of b. Vedors b, and w, are the best and
worst case vedors for the second node location y.

A further refinement of this algorithm, cdled QR2, does
not simply look at the lengths of the remaining vedors,
but takes their diredion into acount. It projeds the
remaining R onto diredion vector z, in the direction of the
projedion of x'.

Z M1 T . 2 M1 T
—-ER.-Z if |z :-ER--Z
b- ”Z”2 jatel : | ” ” jmtel : | (10

Z otherwise

Since projedions are shorted than the sum of lengths, asis
shown in figure 4, the best case intervals are tighter and a
further reduction in the number of evaluated nodes can be
expeded. Note that formula (10) covers the cae of red
valued vedors, where the ésolute value of the inner
product ensures that b is pointing in the same diredion as
z. Without proof we state that if p= Rj*-z is a mmplex
inner product that we must use p if Re(p) >0 and -p
otherwise.

VI. Perfor mance Evaluation

We performed simulation for several systems with an
equal number of transmit and receve aitennas, ranging
from 1 to 8 The transmit vector was BPSK moduated
(s & {+1,-1}). The dements of the channel matrix have a
complex Gaussian distribution with mean zero and
E{H;; [} = 1. For eath transmitted symbol, a new random
channel is generated.

If the noise on each recdve antenna is equal to & i.e.
E{n? =& and the total transmitted power is 1, i.e. the
power per transmit antenna is given by |ls?| = 1/M, then
the receved power per recaéve antennais equal to 1 and
the SNR per receve aitennais given by:

SNR = &2 (12)

Figure 6 shows the symbadl error probability versus the
signal to noise ratio for different decoding algorithms, in a
system with N=M =8 antennas. Clealy, the maximum



likelihood agorithm (whether implemented using the
survivor, QR1 o QR2 agorithm) achieves optimal
performance. The K-best algorithm approximates this
performance for small signal to noise ratio. For larger
signal to noiseratio, the symbal error rate starts to level
off. Of the gproximate dgorithms, the K-best
algorithm performs best. The 5-best algorithm achieves
a SER of 10", the 3-best algorithm has a SER which is
an more order of magnitude higher. The performance
of the myopic (1-best) and greedy algorithms is too
poa to be pradicdly useful in an 8-antenna system.

Figure 7 graphs the complexity in terms of number of
evauated nodes. The gproximate dgorithms that we
considered al have alinea complexity in the number
of transmit antennas M. The exad algorithms are dl
exponential in complexity, asis expeded [7].

The Survivor agorithm is not very efficient in reducing
complexity. A smal reduction in complexity is
acieved for smal M (17% a most). The gan
disappeas for larger M larger than 5. The QR1 and
QR2 algorithms do better , although is clea from the
figure that their advantage starts to disappea as M
becomes larger than 7. For a small number of antennas
(lessthan 4) the QR1 and 2 methods are better than the
approximate dgorithms. For larger numbers, the
approximate dgorithms have less node evaluations.

Obviously the QR methods involve more aomplex
operations, and it remains to be investigated whether
the aditiona complexity expense for the QR
fadorizaion (which must be done dter channel
training) and the vedor projedions, does not outweigh
the advantage of a smaller number of node evaluations.
The K-best method is attradive for larger number of
antennag athough value of k, must be increased with
the number of transmit antenna to achieve satisfadtory
performance

Figure 8 depicts the SER error floor, i.e. the
performance of the various agorithms in the dsence
of noise for 2,3 up to 8 transmit and recave antennas.
The graph shows that the myopic (1-best) algorithm
has hardly pradicd value. Sorting H columns before
applying the myopic dgorithm (grealy), vyields
accetable performance for 2 antennas. The
performance quickly deteriorates for larger number of
antennas. The K-best algorithm seems to perform well
for anumber of antennas that is K+1 to K+2. The MLD
algorithms are not shown sincetheir error floor is zero.

VII. Conclusions

The order N diversity receéver makes it possble, for a
given single antenna system, to increase the bit rate by
in increasing the number of transmit antennas. We
maintain the same delay spreal tolerance and signal
bandwidth, while the reduction in the link budget,
resulting from the fad that the available transmit
energy must be shared among the transmit antennas,
can be oompensated by increasing the number of
recave antenna. This opens the doa to high-speed
wireless systems which change physical limitations on

link budget, delay spread, bandwidth, to practical
limitations: cost of radio circuitry and signal processng
logic. This paper discussed reduction in complexity of the
latter complexity of the latter. The gplicability of the
agorithms presented in this paper extends to the generic
multi-user detedion problem.
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Figure 1. Maximum likelihood sequential deaoding
tree. On the vertical axisis the distance between x and
H times the partially demded s, on the horizontal axis
the demding step. H; denotesthei-th column of H. The
correct MLD solution is s= (+1,-1).
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Figure 2: Example of Survivor demding, M=N=2, x
and H are real, x uses BPSK modulation.
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Figure 3: Example of QR survivor demding, M=N=2
x and H are real. R; and x', are rotated channel matrix
columns and receive vedor, respedively. The points b
and w denote best and worst case estimates,
respedively. In this example, the best case etimates



coincide with the projedion of x' on the R;
hyperplanes.

R, R,

Figure 4. Differencebetween QR-Survivor decoding
methods 1 and 2. Algorithm QR1 normalizes
direction vedor z and multiplies by the total length
of the remaining R columns, while algorithm QR2
uses the projedions of the remaining R columns on
the direction vedor.
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Figure 5: Node Distance versus node number,
showing error intervals after partial decoding. The
dashed line shows the best worst case distance All
nodes with a wor st case distance, crossed out in this
figure, are to be diminated.
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Figure 6: Bit and Symbol Err or Rate versus Signal
to noise ratio (SNR) for (a) greedy, (b) myopic, (ck)
K-best (d) exhaustive MLD for an N=M = 8 system.
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Figure 7: Node eraluation complexity versus N, M
(number of TX, RX antennae), no noise, for (a)

greedy, (b) myopic, (c) K-best (d) Survivor, () QR1,
(f) QR2 and (g) exhaustive.
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Figure 8: SER, floor versus N, M (number of TX, RX
antennae) for (a) greedy, (b) myopic, (ck) K-best, no
noise.
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