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Abstract 

Broadband applications – such as high-speed computer networks, in-home delivery of 
multimedia services, or hospital data networks for telediagnostics involving digital 
imaging – and the demand for flexibility drive the need for broadband wireless 
communication systems. Since the available frequency spectrum is scarce, future systems 
should be characterised by significantly enhanced spectral efficiency in order to increase 
link throughput and network capacity. A very promising approach is to use multiple 
antennas at both the transmitter and the receiver (i.e., a Multiple-Input Multiple-Output 
(MIMO) system). With such a system the throughput can be increased by simultaneously 
transmitting different streams of data on the different transmit antennas but at the same 
carrier frequency. Although these parallel data streams are mixed up in the air, they can be 
recovered at the receiver by using spatial sampling (i.e., multiple receive antennas) and 
corresponding signal-processing algorithms, provided that the MIMO channel is well 
conditioned. This is in general the case in rich-scattering environments, e.g., indoor 
environments. Above technique is referred to as Space Division Multiplexing (SDM). 
 
The combination of the throughput enhancement of SDM with the robustness of 
Orthogonal Frequency Division Multiplexing (OFDM) against frequency-selective fading 
caused by severe multipath scattering and narrowband interference is regarded as a very 
promising basis for future (indoor) high data-rate radio communication systems. SDM 
OFDM is the focus of this dissertation and its main contents and contributions, in the 
natural order from fundamental understanding, theoretical analysis to practical 
measurements, are as follows. 
 
1. By means of a physical interpretation, a fundamental and intuitive explanation is given 
of the spectral efficiency and stability of a wireless MIMO system in rich-scattering 
environments such as indoor environments. 
 
2. A generic wideband indoor MIMO channel model is proposed, including a Line-Of-
Sight (LOS) component and spatial correlation, compacting the typically large number of 
channel parameters into a very few carefully selected ones. A major contribution is the 
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presented simple spatial correlation model with only one or two coefficient(s) that is 
proved to match the statistics of measured correlation matrices – typically consisting of a 
large number of parameters – in terms of capacity and error-rate performance. 
 
3. Different narrowband SDM algorithms are described, including soft-decision 
demapping schemes for cases in which outer coding and decoding is applied. The error-
rate performance and complexity of the algorithms are evaluated for different antenna 
configurations, for various constellation sizes, for different channel properties (some of 
which also include spatial correlation or a LOS component), with and without coding. It is 
shown that Maximum Likelihood Detection (MLD) outperforms the other schemes. Its 
complexity, however, is the highest and growing exponentially with the number of transmit 
antennas. Less complex alternatives are found that have only a slightly worse performance. 
 
4. Through a unified view on (coded) MIMO techniques presented in this dissertation, we 
observed that the best performance is achieved by doing an exhaustive maximum 
likelihood search over the non-redundant lattice representing all possible space-time 
codewords. The complexity of such a search, however, grows exponentially with the 
number of lattice points. The turbo SDM scheme introduced in this dissertation allows for 
a significant complexity reduction, while performing very close to the overall exhaustive 
search. The complexity is reduced by splitting the temporal and spatial processing. The 
high performance at the receiver is achieved by iterating between the spatial demapping 
and temporal decoding. This approach stems from the turbo decoding principle. 
 
5. Since OFDM already forms the basis of the current Wireless Local Area Network 
(WLAN) standards, IEEE 802.11a and g, the combination of SDM and OFDM is seen as 
an attractive solution for future high-speed indoor WLANs. In general, OFDM splits a 
wideband frequency-selective fading channel into a number of narrowband frequency-flat 
fading channels. As a result, all presented narrowband SDM algorithms can be readily 
applied to these subchannels. The combination SDM OFDM is evaluated in theory, with 
performance simulations, and with measurements. The theoretical evaluation is carried out 
by means of a general Space-Frequency performance analysis. It is shown that the 
maximum diversity gain equals the product of the number of transmit and receive antennas 
and the effective length of the channel impulse response. Coded SDM OFDM schemes are 
proposed that achieve a significant part of this diversity gain. 
 
6. When a practical implementation is envisioned, the system has to deal with system 
impairments such as frequency offset, timing offset, phase noise, DC offset, etc. To tackle 
these impairments for SDM OFDM in the WLAN context, we propose training and 
synchronisation (tracking) algorithms which are extensions of those for IEEE 802.11a 
systems. In order to validate these algorithms and the general SDM OFDM concept, a test 
system with three transmit and three receive antennas, and based on IEEE 802.11a 
parameters, was built within Agere Systems, The Netherlands. Results from measurements 
with this test system in a typical office environment show successful transmissions up to 
162 Mb/s, which is three times the data-rate of a regular IEEE 802.11a OFDM system. 
 
Finally, it is concluded that SDM OFDM, although there is room for improvements, is an 
attractive and practical solution to enhance the throughput and/or robustness of wireless 
communication systems based on standards such as IEEE 802.11a considerably. 
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Introduction 

1.1 Communication Trends 
 
During the 19th and 20th century, the way of communication underwent revolutionary 
changes. While in the earlier ages the communication mainly took place from mouth to 
mouth or by sending letters, the introduction of the telegraph, the telephone, the fax 
machine, and the later transition to mobile phone services hugely improved the 
connectivity. Now, at the beginning of the 21st century, a transition that might turn out 
even more revolutionary is taking place as the Internet and other data communication 
applications move into the wireless domain. Ubiquitous connectivity (i.e., connectivity 
anytime and everywhere) to the Internet, to company's Intranets, or to other data services is 
creating room for applications that might not even be thought of today. 
 
Regarding the latter transition, it is very interesting to observe the following two recent 
trends. Firstly, the amount of Internet (data) traffic in the United States is growing 300% 
per year and recently exceeded the amount of voice traffic, as is shown by L.G. Roberts in 
[95]. His findings are depicted in Figure 1-1 where the amount of traffic in bits per second 
is depicted versus the time in years. The historical data to 1995 are obtained from the 
United States National Science Foundation (NSF) and from the Advanced Research 
Projects Agency (ARPA) which founded ARPANET, the predecessor of Internet. Note that 
the annual growth of 300% cannot be maintained but will (most likely) saturate to a fixed 
percentage of the Gross Domestic Product (GDP). The main conclusion, however, is that 
the amount of data traffic surpassed the amount of voice traffic. When we would have the 
figures of the global traffic to our disposal, we would not be surprised to observe the same 
trend. 
 
Secondly, the International Telecommunication Union (ITU) forecasted in its world 
telecommunication development report of 2002 that the number of mobile voice 
subscriptions would exceed the number of fixed voice subscriptions in and beyond 2002. 
The results of this study are given in Figure 1-2 in which the global number of 
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subscriptions (in millions) is depicted against the time in years. So, we can conclude that 
recently wireless/mobile voice surpassed wired/fixed voice in terms of number of 
subscriptions and, consequently, most likely also in terms of amount of traffic. 
 

 
Figure 1-1: Historical and forecasted U.S. Internet traffic ([95]). 
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Figure 1-2: Mobile and fixed telephone subscribers worldwide, 1982 – 2005 ([59]). 

 
When combining above two trends, a logic consequence must be that the amount of 
wireless data traffic will overtake the amount of wired data traffic (at least from an end-
user perspective). This statement is being supported by the increasing demand for 
augmented capacity, data rates, and data services due to: 
 
- the tremendous momentum in wireless technology created both by the successful 

deployment of second generation mobile systems, e.g., GSM (including the quest for 
cheaper, smaller and more power-efficient handsets), and that of wireless data systems 
such as Wireless Local Area Networks (WLANs). 
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- the increasing demand on wireless services, both for voice and data communications. 

In particular the demand for multimedia services such as video-on-demand, 
downloading music and movies, video conferencing, etc., is expected to diversify 
services and increase the volume of data traffic. As a result, emerging wireless/mobile 
networks are more and more networks that can integrate both voice and data services, 
opposed to the traditional voice-oriented networks. In general these emerging networks 
are operating on a packet basis (i.e., packet-switched) instead of setting up an end-to-
end connection (i.e., circuit-switched). 

 
- the growing demand for flexibility and ubiquity. Communication services are expected 

to be available anytime and everywhere. Moreover, ubiquitous services aim to expand 
the objects of communication services, which have mostly been limited to humans so 
far, to everything and anything. In principle, everything or anything that moves is a 
potential object for mobile/wireless communication. For example, extremely small 
wireless chips may be attached to all products in a store to facilitate automatic billing 
of products that are taken to the cash desk (see, e.g., the efforts of the Radio Frequency 
Identification (RFID) association: [91]). Another example is the trend of the workplace 
becoming increasingly mobile. Ultimately, the worker should be able to log onto the 
company's Intranet, anytime and everywhere.  

 
- the continued scaling of Integrated Chips (IC) technology, allowing for more low-cost, 

power-efficient computing and resulting in increased integration and complex systems-
on-a-chip. 

 
Hence, it is obvious that the main goals in developing next generations of wireless 
communication systems (still) are increasing the link throughput (i.e., bit rate) and the 
network capacity. Since equipment cost (at least for the near future) and radio propagation 
conditions appear to limit the realm of wireless and mobile systems to the range around 
1 GHz to 6 GHz, the available frequency spectrum is limited. So to fulfil above goals, 
future systems should be characterised by improved spectral efficiency. 
 
Research in the information theory, performed in the early nineties, has revealed that 
important improvements in spectral efficiency can be achieved when multiple antennas are 
applied at both the transmitter and receiver side, especially in rich-scattering environments. 
This has been shown for wireless communication links in both narrowband channels 
([36])1 as well as wideband channels ([93]), and it initiated a lot of research activity to 
practical communication schemes that exploit this spectral-efficiency enhancement. The 
resulting multiple-transmit multiple-receive antenna, i.e., Multiple-Input Multiple-Output 
(MIMO), techniques can basically be split into two groups: Space-Time Coding (STC) 
([5, 82, 116]) and Space Division Multiplexing (SDM) ([36, 93, 132]). STC increases the 
robustness/ performance of the wireless communication system by transmitting different 
representations of the same data stream (by means of coding) on the different transmitter 
branches, while SDM achieves a higher throughput by transmitting independent data 
streams on the different transmit branches simultaneously and at the same carrier 
frequency. In case of STC, advanced signal processing algorithms at the receiver combine 
the signals originated from the different transmitters to enhance the performance. In case of 
SDM, advanced signal processing algorithms at the receiver recover the parallel streams of 
                                                 
1 Seeing the notation [36] as "abbreviation" of the exact text of the corresponding reference, when the exact 
text does not fit directly in the sentence, we will place it between brackets. 
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data that are mixed-up in the air. The latter technique usually requires multiple receive 
antennas, too, to ensure adequate performance. 
 
The highest spectral efficiency gains are (on average) achieved when the individual 
channels from every transmit antenna to every receive antenna can be regarded to be 
independent. In practice this is the case in rich-scattering environments, with, preferably, 
no direct communication path (i.e., Line Of Sight (LOS) path) present between transmitter 
and receiver. So, especially for enhancement of the throughput of wireless applications in 
rich-scattering environments, MIMO techniques are appealing. In general, MIMO can be 
considered as an extension to any Single-Input Single-Output (SISO), Single-Input 
Multiple-Output (SIMO), i.e., receiver diversity, or Multiple-Input Single-Output (MISO), 
i.e., transmit diversity, system operating in these environments. To narrow the overall 
picture and to get a more concrete feeling of the application area, an overview of current 
and future wireless (data) standards as function of data rate and typical "cell" radius is 
provided in Figure 1-3. The typical "cell" radii of the Wireless Local Area Network 
(WLAN) standards IEEE 802.11b and 802.11a/g indicate that they are usually deployed in 
an indoor environment, while the probability of having no direct communication path 
between transmitter and receiver is high. So, we can conclude that the deployment 
conditions of WLAN systems are most favourable for applying MIMO. 
 

10 kbps 100 kbps 1 Mbps 10 Mbps 100 Mbps 

Data rate 

5 m

50 m

500 m

5 km

Ty
pi

ca
l "

ce
ll"

 ra
di

us
 GSM GPRS EDGE

UMTS

DECT

Bluetooth HomeRF

IEEE 802.16

IEEE 
802.15.3 

IEEE 
802.15.3a ZigBee 

802.11b
802.11a/g

WAN 

MAN 

LAN 

PAN 

 
Figure 1-3: Overview of existing and future wireless data communication standards. 

 
The standards of WLAN that currently gain the most momentum are IEEE 802.11a ([57]) 
and IEEE 802.11g ([56]). These two standards are based on Orthogonal Frequency 
Division Multiplexing (OFDM) ([23, 126, 141]). The main reason that OFDM was 
selected as basis for these standards is its capability to deal with the strong multipath 
propagation present in indoor propagation channels. In severe multipath, the multipath 
components add constructively and destructively and, as a result, the received signal can 
vary as a function of frequency, location and time. These variations are collectively 
referred to as fading and can lead to severe distortion of the received signal. OFDM, 
however, can mitigate this problem efficiently, since in OFDM, essentially, a wideband 
frequency-selective fading channel is split up into multiple orthogonal narrowband 
frequency-flat fading channels (i.e., subchannels or subcarriers) of which each can be 
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equalised in a trivial way (see Section 5.2 for a more thorough explanation of OFDM). 
Combined with coding, this principle also results in robustness against narrowband 
interference. Moreover, the ability to include a proper guard interval between subsequent 
OFDM symbols provides an effective mechanism to handle Inter-Symbol Interference 
(ISI) caused by severe multipath propagation. 
 
The robustness of OFDM against frequency-selective fading and the favourable properties 
of indoor radio channels for SDM techniques ([137]) lead to the very promising 
combination of OFDM SDM as potential solution to satisfy the main goals in developing 
next generations of wireless communication systems. As such, OFDM SDM techniques are 
attractive candidates for high data rate extensions of the IEEE 802.11a and 802.11g 
standards. As example the IEEE 802.11 Task Group 'n' (TGn) can be mentioned which is 
planning to define high-data rate WLAN extensions up to 250 Megabits per second (Mbps) 
([56]). The main focus of this dissertation is this promising combination of the data rate 
enhancement of SDM with the relatively high spectral efficiency of OFDM in the context 
of WLAN. 
 
Since OFDM is also a potential candidate for the emerging standard IEEE 802.15.3a and, 
furthermore, forms the basis of one of the air interfaces defined in IEEE 802.16, we believe 
that our results can be extended to these systems as well, provided the underlying 
propagation channels exhibit sufficiently rich multipath and do not change too rapidly over 
time or frequency. Otherwise additional channel tracking methods are required. 
 

1.2 The History of WLAN 
 
Since the beginning of the nineties, WLANs for the 900 MHz, 2.4 GHz and 5 GHz license-
free ISM (Industrial, Scientific and Medical) bands have been available, based on a range 
of proprietary techniques ([121, 126]). In June 1997 the Institute of Electrical and 
Electronics Engineers (IEEE) defined an international interoperability standard, called 
IEEE 802.11 ([56]). This standard specifies a number of Medium Access Control (MAC) 
protocols and three different Physical Layers (PHYs). Two of these PHYs are based on 
radio communication and use the 2.4 GHz band and the other PHY uses infrared light. All 
three PHYs support a data rate of 1 Mbps and optionally 2 Mbps. 
 
User demand for higher bit rates and the international availability of the 2.4 GHz band has 
spurred the development of a higher speed extension to the 802.11 standard. In July 1998, 
a new standard was defined, named IEEE 802.11b, which describes a PHY providing a 
basic rate of 11 Mbps and a more robust rate, i.e., a fall-back rate, of 5.5 Mbps. Current 
widely-available products support both the 11 and 5.5 Mbps modes as well as the 1 and 2 
Mbps modes (see, e.g., Figure 1-4). Meanwhile, in Europe, the European 
Telecommunication Standards Institute (ETSI) specified its own WLAN standard, called 
HIPERLAN/1 ([31]), which defines data rates ranging from 1 Mbps to 20 Mbps. In 
contrast to the IEEE 802.11b standard, no commercial products have been developed that 
support the HIPERLAN/1 standard. 
 
Motivated by the demand for even higher data rates and by the opening of new unlicensed 
spectrum in the 5 GHz band for the use of a new category of equipment called Unlicensed 
National Information Infrastructure (UNII) devices ([34]), a new IEEE 802.11 working 
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group, called Task Group 'a' (TGa), started working on third generation (3G) WLANs. In 
July 1998, this group selected Orthogonal Frequency Division Multiplexing (OFDM) as 
transmission technique for the newly available spectrum in the 5 GHz band. In 2000, the 
standard was ratified and called IEEE 802.11a. It defines data rates between 6 and 54 
Mbps ([57]). To make sure that these data rates are also available in the 2.4 GHz band, mid 
2003 IEEE standardisation group finalised a similar standard for this band named IEEE 
802.11g ([56]). 
 

 
Figure 1-4: An IEEE 802.11b wireless LAN PC card. 

 
Following the IEEE standardisation effort for the 5 GHz band, similar activities were 
started in Europe by a new ETSI working group named Broadband Radio Access 
Networks (BRAN) and in Japan by the MMAC group. BRAN was working on the next-
generation HIPERLAN known as HIPERLAN/2 ([30]). The Multimedia Mobile Access 
Communication (MMAC) project is a cooperation of Japanese equipment manufacturers, 
service providers, and the Japanese Ministry of Post and Telecommunications ([76]). 
Following the selection of OFDM by the IEEE 802.11a standardisation group, both the 
ETSI BRAN and MMAC working groups adopted OFDM for their PHY. The three 
standardisation groups have worked in close co-operation since then to ensure that the 
standards are harmonised as much as possible thereby enabling equipment to be 
compatible worldwide. The main differences, however, are in the way the Medium Access 
Control (MAC) is defined. For instance, the HIPERLAN/2 MAC is based on a centralised 
protocol with Quality of Service (QoS) capabilities, including priority rules and provisions 
to ensure traffic-dependent maximum delays are not exceeded, whereas the IEEE 802.11 
MAC is based on a random access protocol (i.e., decentralised). The QoS requirement of 
multimedia applications in particular urged the IEEE 802.11 body to also include QoS 
capabilities in their standard. This is currently pursued in IEEE 802.11 Task Group 'e' 
([56]). 
 
Based on the commercial availability of the higher data rate IEEE 802.11a and IEEE 
802.11g products and the demand for high data rates, and building on the tremendous 
success of IEEE 802.11b products, it is expected that the former will soon surpass the latter 
in terms of sold volumes per month. In fact, in the second quarter (Q2) of 2003 9.9 million 
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Wireless-Fidelity (Wi-Fi)1 certified WLAN units were shipped ([58]). In Q1 of 2003 6.9 
million units entered the WLAN market. For 2002 overall, 18.7 million units were shipped, 
a 90% growth over 2001. From the 9.9 million units in Q2 of 2003, 1.7 million were IEEE 
802.11g products (and almost all other 8.2 million units were 802.11b products), whereas 
the amount of IEEE 802.11g units shipped in 2002 was only marginal. 
 
The growing success of the WLAN product family together with the demand for even 
higher bit rates confirms the need for research to high data-rate extensions for WLANs. 
Based on the argument that the success of new products also depends on its capability to be 
coexistent and interoperable with current standards, it appears to be logical to restrict this 
research to high data-rate extensions for OFDM. Together with the arguments of the 
previous section, this once more confirms the high potential of the combination of SDM 
and OFDM. The concept of SDM is explained in more detail in the next section. 
 

                                                 
1 The Wireless-Fidelity (Wi-Fi) Alliance is a nonprofit international organisation formed in 1999 to certify 
interoperability of WLAN products based on IEEE 802.11 specification (http://www.wi-fi.com/).  

1.3 Space Division Multiplexing 
 
As already mentioned in Section 1.1, exploiting the spatial dimension by applying multiple 
antennas at both sides of the communication link is seen as a promising solution to 
significantly increase the bandwidth efficiency. Information theoretical research has 
namely revealed that the multipath wireless channel is capable of enormous capacities, 
provided that the multipath scattering is sufficiently rich ([35, 36, 93, 94, 98, 142]). The 
multipath scattering can be properly exploited through the use of an appropriate processing 
architecture. The diagonally-layered space-time architecture proposed in [35], known as 
Diagonal BLAST (Bell Laboratories Layered Space Time) or D-BLAST, is such an 
approach. See Figure 1-5a for a schematic representation of its transmission structure 
(where sp[n] denotes the n-th symbol originating from the p-th transmitter branch – before 
the cycling operation). The detector of this diagonal approach is, however, very complex 
and hard to implement. Therefore, a simplified version of BLAST, known as Vertical 
BLAST or V-BLAST was proposed in [144]. Note that "vertical" in V-BLAST does not 
denote the way the parallel data streams are encoded (in general, this is done 
"horizontally", see Figure 1-5b), but it refers to the way the detection at the receiving end 
is performed, namely, vertically, i.e., per time instant). In Bell Labs, a prototype with 12 
transmit and 15 receive antennas and with V-BLAST detection was built by which it was 
demonstrated that bandwidth efficiencies up to 70 bits/s/Hz can be achieved in an indoor 
propagation environment at realistic SNRs and error rates ([88]). 
 
The techniques based on multiplexing transmit signals over multiple antennas, i.e., over 
space, can be captured under the more general term Space Division Multiplexing (SDM) or 
Space Division Multiple Access (SDMA). SDM techniques exploit the spatial dimension 
by using multiple antennas to transmit. Basically, these techniques simultaneously transmit 
different signals on different transmit antennas, at the same carrier frequency. These 
parallel streams of data are mixed-up in the air, but can be recovered at the receiver by 
using advanced signal processing algorithms, which usually require multiple receive 
antennas, too, to ensure adequate error-rate performance. The difference between SDM and 
SDMA is that the latter allows different users to transmit simultaneously on a single 
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antenna each, whereas in SDM a single user transmits simultaneously on multiple 
antennas. Hybrid schemes can also be envisioned. 
 

 
(a) 

 

 
(b) 

Figure 1-5: Transmission scheme of D-BLAST (a) and V-BLAST (b). 
 

One can naturally ask in which way SDM(A) techniques differ from traditional multiple 
access techniques. Some of these differences are worth pointing out ([144]): First, unlike 
code-division or other spread-spectrum multiple access techniques, the total channel 
bandwidth utilised by an SDM(A) system is only slightly higher than the symbol rate, i.e., 
similar to the bandwidth required by a conventional single-carrier transmission technique 
like Amplitude Modulation (AM). Second, unlike Frequency Division Multiple Access 
(FDMA), each transmitted signal occupies the entire system bandwidth. Finally, unlike 
Time Division Multiple Access (TDMA), the entire system bandwidth is used 
simultaneously by all of the transmitters all of the time. These differences together are 
precisely what give SDM(A) the potential to realise higher bandwidth efficiencies than the 
other multiple-access techniques. 
 
After the theoretical proof of the MIMO gains by Foschini in [36], various measurement 
systems and prototypes were built to verify its potential gains in practice as, among others, 
reported in [1, 68, 88, 136]. Moreover, recently the first successful implementations were 
announced in [3] and [37]. 
 

1.4 Framework and Goals 
 
The research reported in this dissertation was conducted within the framework of a Dutch 
cooperative research project called B4 and funding was provided by Agere Systems, The 
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Netherlands. B4 ("BraBant BreedBand"; North-Brabant is a Dutch province and 
"breedband" is Dutch for broadband) is a research alliance initiated by KPN (a Dutch 
telecom provider), Lucent Technologies and the Eindhoven University of Technology 
(TU/e) in the area of broadband communication technologies ([12]). Main goals of the 
alliance are to further enhance the strong position of The Netherlands in this field in 
response to the explosive growth of the telecommunication technologies market, and to 
consistently create innovations for future products and applications. An essential element 
of the alliance is therefore joint pre-competitive research in broadband networks, including 
fibre and wireless technologies and services, from the conceptual phase up to and including 
verification and exploitation in pilot trials involving students using laptops. Its activities 
are organised in a number of task forces, in which specific partners support the three 
initiating organisations. 
 
In one of these task forces named Broadband Radio@Hand, Agere Systems, TNO Telecom 
(formerly KPN Research), Philips, and the TU/e have joined their forces to investigate how 
future wireless (data) networks (based on UMTS and/or WLAN) can be realised that 
guarantee bandwidth and quality on demand, at the office and on the road. The primary 
objective of Broadband Radio@Hand is the development of a new state-of-the-art for 
(wireless and radio-over-fibre) networks with high capacity and corresponding services, to 
facilitate the development of new multimedia services within The Netherlands. The 
strength of the consortium is that the partners cover the complete field that is required to 
pursue this development; from system design, antenna knowledge, channel modelling, 
modulation and detection techniques, signal processing, RF-circuit and ASIC design, 
network technologies, to know-how on IC-production. More concretely, the main goals of 
the project are to substantially improve: 
 
- the practical achievable system capacity, 
- the transmission quality (i.e., QoS). 
 
An important constraint is that above points should be realised with reasonable investment 
efforts and with low resulting operational cost. 
 
Within this framework and based on the trends identified in Section 1.1, the focus of this 
dissertation is the development of high data rate WLANs for indoor scenarios, which, 
based the IEEE 802.11a/b/g parameters, may also be applicable in low-range low-mobility 
urban (outdoor) scenarios. Two fundamental problems complicate the design of high data 
rate indoor networks. Firstly, regulatory restrictions on bandwidth and transmit power exist 
in the frequency bands exploited by WLANs and inherently limit the capacity achievable 
with conventional SISO techniques. As mentioned before, SDM is a very promising 
technology to overcome this problem. Secondly, the indoor propagation channel exhibits 
strong multipath propagation. As we already explained, OFDM can effectively deal with 
severe multipath. Furthermore, due to the high cost and deployment in wireless 
communications, it is crucial that next-generation standards are a logical evolution of 
current standards and, as such, are coexistent and (preferably) backwards compatible. 
Based on above arguments, the combination of SDM and OFDM is regarded as a very 
promising candidate for next-generation WLANs. In this context, the main objectives of 
this dissertation are: 
 
- get a more fundamental understanding of MIMO, 
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- introduce a good and useful wideband MIMO channel model (for indoor 

environments), 
- evaluate and find efficient SDM detection techniques in terms of performance and 

complexity, 
- evaluate these techniques in combination with OFDM, e.g., by performing simulations 

and making use of the proposed wideband MIMO channel model, 
- verify the SDM OFDM combination in real-life channels by means of a test system. 

This also requires tackling of radio imperfections encountered in practical systems. 
 
The next section gives an overview of the work that is reported in this dissertation and that 
was performed based on above objectives.  
 

1.5 Survey of this Dissertation and Contributions 
 
In this section, a general preview is given of the different chapters of this dissertation. 
Furthermore, the main contributions are pointed out. The content of this dissertation 
follows the logical order from the fundamental understanding of MIMO, the theoretical 
analysis of MIMO and MIMO OFDM, to practical measurements with a MIMO OFDM 
test system based on WLAN parameters. Below, a short summary is presented per chapter 
and the main contributions are given by means of bulleted indices. 
 
In Chapter 2, the effect of one of the simplest SDM algorithms called Zero Forcing (ZF) on 
the antenna array pattern is evaluated. It is shown that in free space, i.e., when the MIMO 
channel only consists of Line Of Sight (LOS) components, a weight generated to retrieve 
the signal from a particular TX antenna alters the antenna array pattern such that a null is 
placed in the direction of the unwanted TX antenna(s). When reflections are present, 
however, a weight vector generated for this latter case places a "null spot" at the location 
of an unwanted TX antenna. Moreover, in the latter case, the wanted TX antenna turns out 
to be positioned in a local maximum, resulting in a maximum separation. This provides an 
intuitive explanation of the robustness of MIMO in rich-scattering environments. 
 
• Based on a physical interpretation, an intuitive and fundamental explanation of the 

MIMO principle was found. It shows why MIMO achieves a higher spectral efficiency 
and stability in rich multipath scattering. This work was published in [131]. 

 
Chapter 3 describes the properties of the richly scattered propagation channel. The indoor 
propagation channel is characterised by rich multipath scattering due to the reflection of 
the transmitted electromagnetic waves on walls and objects in the environment. Based on 
these geometrical considerations, a stochastic wideband MIMO channel model is proposed. 
It is based on the Non Line Of Sight (NLOS) tapped delay line model commonly used for 
wideband MIMO simulations and extended with two critical impairments for MIMO, 
namely a LOS component and spatial correlation. By this model, the typically large 
number of channel parameters are captured by a very few carefully selected ones, in order 
to take into account the crucial properties of the propagation channel that impose the main 
constraints on the design of a WLAN. 
 
• A stochastic wideband MIMO channel model was developed based on a tapped delay 

line and including key parameters of the propagation channel like fading depth, root 
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mean square (rms) delay spread, propagation loss, a LOS component, and spatial 
correlation. A number of narrowband models were shown to be specific cases of the 
introduced generic wideband model. 

 
• To model Additive White Gaussian Noise (AWGN) in the MIMO case, a specific 

constant-modulus orthogonal MIMO channel model was generated.  
 
• Spatial fading correlation, representing the correlation between the various elements of 

a MIMO channel, is generally characterised by many parameters. For two commonly 
used performance measures, namely capacity and error-rate performance, we 
introduced a mathematical mapping of the many correlation parameters to one or two 
parameter(s) while maintaining the same performance. Based on this mapping a spatial 
correlation model was developed that allows for easy inclusion of spatial correlation in 
MIMO simulations. The strength of the model is that, by ranging the one or two 
parameter(s) from zero to one, all scenarios ranging from totally uncorrelated to fully 
correlated spatial fading can be considered. The mathematics, the model, and 
simulation results were submitted for publication in [133]. Earlier work was published 
in [134]. 

 
Chapter 4 discusses MIMO techniques suitable for channels with fading that is flat over 
frequency (i.e., narrowband techniques). First, an overview is given of the various MIMO 
algorithms presented in a vast amount of literature, including STC and SDM algorithms. It 
is shown that basically all these techniques can be mapped on a general structure including 
an encoder, a space-time mapper, and constellation mappers. This effort can be considered 
as a good starting point for a unified theory on MIMO. Second, a number of capacity 
definitions are given for MIMO systems with different properties. Based on these 
definitions, the outage Packet Error Rate (PER) is defined. Third, various SDM algorithms 
are described and their complexities are evaluated. For some algorithms, a theoretical 
error-rate analysis is presented to be able to verify the simulation results. Fourth, the 
described SDM algorithms are compared in terms of error-rate performance for systems 
without and with coding on top of the SDM scheme, and in terms of complexity. Fifth, the 
turbo principle is introduced to the SDM context and is called turbo SDM. In this scheme, 
the SDM mapping is seen as inner code and combined with some form of outer coding. 
This combination allows the receiver to iterate between the inner and outer code and, as a 
result, improve the error-rate performance substantially. 
 
• The thorough study of different MIMO techniques resulted in the fact that we found a 

general structure on which basically all techniques can be mapped. This resulted in the 
presentation of a unified framework that can be envisioned as a good starting point for 
the development of a unified theory on MIMO. 

 
• Different SDM algorithms were studied. Their complexity was calculated in terms of 

number of additions and number of multiplications. Early results were presented in 
[129, 132]. Next to the complexity analyses, for some algorithms theoretical error-rate 
analyses were carried out and reported, and for a larger set of techniques, soft decision 
output values were defined. Soft values can be used by the decoder of the outer code to 
achieve a better performance, since soft values do not only provide the estimated value 
of a bit but also a measure for the reliability of that estimate. 
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• The described algorithms were implemented in MATLAB and extensive simulations 

were performed in order to compare their performance. The simulations were done for 
different antenna configurations, for various constellation sizes, for different channel 
properties (some of which also include spatial correlation or a LOS component), 
without and with additional coding. Moreover, the simulations were verified with the 
findings of the theoretical error-rate analyses. 

 
• Chapter 4 also reports the analysis that was performed to validate the proposed 

compact representation of spatial correlation (by means of the introduced simple 
model) with respect to the error-rate performance. The results were submitted for 
publication in [133]. 

 
• Independent from the work reported in [106, 123], the idea of adding turbo processing 

to coded SDM was born and published in [138]. This idea was further worked out and 
reported at the end of Chapter 4. Its performance was investigated by an evaluation tool 
developed for turbo codes named the EXIT chart method. Next to that, a turbo SDM 
scheme was programmed in C++ and a number of simulations were performed and 
compared with other MIMO techniques. 

 
In Chapter 5, first the principle of OFDM is explained. Second, the combination of MIMO 
and OFDM is described. The core idea is that the wideband frequency-selective MIMO 
channel by means of the MIMO OFDM processing is transferred to a number of parallel 
flat-fading MIMO channels. Third, the wideband MIMO capacity is determined and the 
corresponding outage PER is defined. Fourth, a theoretical Space-Frequency analysis is 
presented based on the Pairwise Error Probability (PEP) to better understand the 
achievable performance and to deduce proper design criteria for MIMO OFDM systems. 
Fifth, two practical coding schemes are described; one is called Joint Coding (JC) and the 
other Per-Antenna Coding (PAC). For the latter, based on the results of Chapter 4, an 
efficient decoding scheme is proposed that has a much lower complexity than the optimal 
decoding scheme, but achieves comparable performances. This is shown by an extensive 
set of simulations based on IEEE 802.11a parameters. 
 
• A concise tutorial on OFDM was developed describing its principle, how multipath 

distortion is handled, the main advantages of OFDM, and the general block diagram of 
an OFDM transceiver. 

 
• The basis of a unified framework for MIMO introduced in Chapter 4 was extended 

with OFDM resulting in a general structure for a space-time-frequency scheme. Based 
on the main goal of this dissertation, enhancing the throughput of WLANs, we saw 
(and still see) the combination of SDM with OFDM as a very promising approach. The 
publications [129] and [137] are regarded to be among the first that presented the 
MIMO OFDM concept in the WLAN context. 

 
• We introduced a MIMO OFDM signal model using a compact matrix notation. The 

strength of this matrix signal model is that it allows for mathematical derivations for 
MIMO OFDM systems, such as the in Section 5.5 introduced capacity definition for 
wideband channels and its corresponding outage PER. Also the space-frequency 
analysis performed in Section 5.6 and pointed out in the next bulleted index is done 
with this concise model. Furthermore, it can be used for impairment studies such as 
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timing offset and frequency offset analyses (see [102, 103, 135]), phase noise analysis, 
etc. 

 
• A theoretical space-frequency error-rate analysis was performed in which the analysis 

of [20] was extended to include next to the spatial correlation of the receive side also 
the spatial correlation at the transmit side. This analysis can be used to design space-
frequency codes/schemes that are not only performing well in idealised situations but 
are also robust in scenarios where spatial correlation is present. In order to simplify the 
space-frequency code design, we added the idea of subcarrier grouping described in 
[147] to our analysis. Moreover, we showed (based on the ideas of [4]) that under 
realistic conditions dedicated space-frequency code design rules can be overruled by 
the established Euclidean distance criterion. 

 
• For transmission schemes in which the encoding is done per transmitter branch, we 

introduced an efficient decoding scheme with a low complexity and called it Per-
Antenna-Coding Successive-Interference-Cancellation (PAC SIC). This scheme 
performs closely to the optimal performing scheme at the expense of a manageable 
latency. It was published in [130]. 

 
• The proposed (coded) SDM OFDM algorithms were programmed in MATLAB and an 

extensive set of simulations based on WLAN parameters was performed in order to 
evaluate their performance. The simulations were performed for various antenna 
configurations, rms delay spreads, constellation sizes, coding rates, and NLOS and 
LOS scenarios. Parts of the results were published in [130, 135, 137]. 

 
In the preceding chapters of Chapter 6, system impairments are assumed to be negligible. 
Practical implementations of digital communication systems, however, have to deal with 
impairments such as frequency offset, timing offset, phase noise, IQ imbalance, DC offset, 
etc. Therefore, in order to validate the implementability of MIMO OFDM algorithms, 
including the effect of impairments, a test system with three transmit and three receive 
antennas was built within Agere Systems, The Netherlands. Chapter 6 reports on the 
design choices of the preamble, how the time and frequency synchronisation is performed, 
how the propagation channel is estimated, and how the synchronisation is tracked. 
Furthermore, the test system is described in detail and the results of a set of performed 
measurements based on IEEE 802.11a parameters are presented. 
 
• Early results of the work presented in this dissertation were the initiator for building a 

test system with three transmit and three receive antennas within Agere Systems, The 
Netherlands, that operates in the license free 5.x GHz band.  

 
• A preamble design and corresponding processing for a MIMO OFDM WLAN 

application were developed. The processing provides extensions of the way 
impairments are handled in OFDM to include MIMO. The proposed preamble design 
has the IEEE 802.11a preamble as basis and supports backwards compatibility. The 
strength of the presented preamble design and processing for MIMO OFDM is that 
they are straightforward extensions of those for OFDM. More enhanced solutions are 
also possible as described in 5 (co-)authored patents that are pending. 
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• Measurements were performed with the test system within the office building of Agere 

Systems, Nieuwegein, The Netherlands. By these measurements we demonstrated the 
concept of SDM OFDM in practice and showed successful transmissions of data rates 
up to 162 Mbps. These results are seen as the industry first demonstration of 162 Mbps 
based on MIMO OFDM in the WLAN context and attracted a lot of attention in the 
world press (see, e.g., [24]). The proposed preamble design and processing, and the 
measurement results were accepted for publication in [135]. 

 
Finally, Chapter 7 describes the major conclusions of this work and indicates some 
promising directions for future research. 



 

2  
 

Physical Interpretation of MIMO Transmissions 

2.1 Introduction 
 
In the previous chapter, we already introduced the MIMO concept as a communication 
technique that exploits the spatial dimension by applying multiple antennas at both the 
transmitter and receiver side. This MIMO principle has been thoroughly studied by 
mathematical evaluations in literature, but to the author's knowledge, it has never been 
explained by a physical interpretation. In this chapter, such a physical interpretation is 
presented providing a fundamental understanding of the MIMO concept in radio 
communication. Moreover, it gives an intuitive explanation why the spectral efficiency and 
stability of MIMO are especially high in rich-scattering environments. 
 
In Section 2.2, the MIMO communication principle is explained and a detection technique 
called Zero Forcing (ZF) is described. In Sections 2.3, 2.4, and 2.5, the effect of the 
environment on the antenna array pattern of the receiver (after ZF detection is applied) is 
evaluated by considering in each section a different number of reflecting planes. Section 
2.6 describes the effect on the antenna array patterns of the receiver when the receiver does 
not perfectly know the communication channel, but only has a noisy estimate of the 
channel. Finally, in Section 2.7 conclusions are drawn. 
 

2.2 Multiple-Input Multiple-Output Communication 
 
Consider a wireless communication system with Nt transmit (TX) and Nr receive (RX) 
antennas. The idea is to transmit different streams of data on the different transmit 
antennas, but at the same carrier frequency. The stream on the p-th transmit antenna, as 
function of the time t, will be denoted by sp(t). When a transmission occurs, the transmitted 
signal from the p-th TX antenna might find different paths to arrive at the q-th RX antenna, 
namely, a direct path and indirect paths through a number of reflections. This principle is 
called multipath. Suppose that the bandwidth B of the system is chosen such that the time 
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delay between the first and last arriving path at the receiver is considerably smaller than 
1/B. In this case the system is called a narrowband system. For such a system, all the 
multipath components between the p-th TX and q-th RX antenna can be summed up to one 
term, say hqp(t). Since the signals from all transmit antennas are sent at the same frequency, 
the q-th receive antenna will not only receive signals from the p-th, but from all Nt 
transmitters. This can be denoted by the following equation (in this chapter, the additive 
noise at the receiver is omitted for clarity, but will be introduced in Section 3.4) 
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this results in 
 
 ( ) ( ) ( )ttt sHx = . (2.3) 
 
A schematic representation of a MIMO communication scheme can be found in Figure 2-1. 
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Figure 2-1: A schematic representation of a MIMO communication system. 

 
Mathematically, a MIMO transmission can be seen as a set of equations (the recordings on 
each RX antenna) with a number of unknowns (the transmitted signals). If every equation 
represents a unique combination of the unknown variables and the number of equations is 
equal to the number of unknowns, then there exists a unique solution to the problem. If the 
number of equations is larger than the number of unknowns, a solution can be found by 
performing a projection using the least squares method ([113]), also known as the Zero 
Forcing (ZF) method (see Section 4.6). For the symmetric case (i.e., Nt = Nr), the ZF 
solution results in the unique solution. 
 
Suppose the coefficients of the unknowns are gathered in the channel matrix H(t) and the 
number of parallel transmit signals (unknown variables) equals to the number of received 
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signals (equations), i.e., Nt = Nr, then the equations are solvable when H(t) is invertible. 
Under this condition, the solution of (2.3) can be found by multiplying both sides with the 
inverse of H(t): 
 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )ttttttt

tN ssIsHHxH === −− 11 , (2.4) 
 
where IN is the N × N dimensional identity matrix. Thus, to estimate the transmitted signals 
at the receiver, the vector x(t) must be multiplied by the inverse of the channel matrix H(t). 
To that end, the channel matrix must be known at the receiver. This can be done by, e.g., 
sending a training sequence, that is known to the receiver, to train the channel. 
 
In the next sections, a system with two transmit antennas (Nt = 2) and two receive antennas 
(Nr = 2), or shortly, a 2 × 2 system is considered. It will be assumed that the receiver 
perfectly knows the channel. With this assumption, we may write the two solutions s1(t) 
and s2(t) as 
 
  ( ) ( ) ( )ttts xw1

1 = , (2.5) 
 
  ( ) ( ) ( )ttts xw 2

2 = , (2.6) 
 
where wi(t) denotes the weight vector that is applied at the receiver to estimate the i-th 
transmitted signal and can be shown to be equal to the i-th row of H–1(t). In the next 
sections, for a specific antenna setup in different environments (with and without 
reflections), we will determine the channel coefficients and the weights, and show what the 
influence of these weights is on the RX antenna array pattern. 
 

2.3 Free Space Aspects 
 
A free-space scenario is considered where a 2 × 2 system is placed in an (artificial) 
environment where no reflections occur. Both the antenna set-up and the environment are 
assumed static and, therefore, the channel coefficients are constant over time. Hence, the 
time index can be omitted. Since no reflections take place, the channel coefficient between 
the p-th TX antenna and the q-th RX antenna, hqp, only consists of the direct path between 
these antennas. Denote the length of this path by dqp in metres, then both the power and 
phase of the channel coefficient are a function of dqp. Since the system is operation in free 
space, the power at a distance dqp from the p-th transmitter is given by the Friis free space 
equation ([92]): 
 

 ( )
( ) sqp

rtt
qpr Ld

GGPdP
22

2

4π
λ

=  Watts , (2.7) 

 
where Pt is the transmitted power per TX antenna, Gt and Gr are, respectively, the 
transmitter and receiver antenna gains, Ls is the system loss factor not related to 
propagation and λ is the wavelength in metres. In the next analysis, we assume that there is 
no system loss (Ls = 1) and that unity gain antennas are used (Gt = Gr = 1). The phase at a 
distance dqp equals –2πdqp/λ rad. This results in the following channel coefficient 
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Once the four elements of the channel matrix H are known, the weights for the Zero 
Forcing MIMO processing can be determined. The weight vectors w1 and w2 are obtained 
as described in Section 2.2. We want to see what the effect of these weights is. To that end, 
a dummy antenna is placed at a given two dimensional spot (x,y) and the received vector as 
function of (x,y) is determined: x(x,y). This vector is multiplied by the weights w1 and w2, 
respectively, and we now can, e.g., show what the power is of the resulting signals as 
function of (x,y). These plots can be seen as the RX antenna array patterns after applying 
the weights. 
 
Here, this is worked out for an antenna set-up as depicted in Figure 2-2. Assume that the 
TX antennas and RX antennas are centred on the y-axis, with an antenna spacing of 
respectively dTX = 1λ and dRX = 1λ, furthermore, assume that the distance between the 
transmitter array and receiver array equals D = 100λ, and that the power per TX antenna 
equals 0.035 Watts1. Then, the channel matrix can be shown to be 
 

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 














⋅−⋅−

⋅−⋅−
=

⋅⋅

⋅⋅

1002exp100012exp

100012exp1002exp

100004
035.0

100014
035.0

100014
035.0

100004
035.0

22

22

ππ

ππ

ππ

ππ

jj

jj
H , (2.9) 

 
from which the weight vectors can be determined by taking the rows of the inverse of H. 
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Figure 2-2: Antenna set-up. 

 
Applying these weight vectors results in the RX antenna array patterns as given in Figure 
2-3. The points in the plots are calculated using a grid in polar coordinates, with an angular 
                                                 
1 This more or less equals 15 dBm which is the average TX power commonly used in WLAN products. 
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grid of ½⋅180/π⋅tan(½⋅dTX/D) ≈ 0.143 degrees and a radius grid of 1λ. To smooth the plots, 
interpolation is applied. Note that the TX antenna positions are denoted by the white 
crosses and the RX antenna positions by the black ones. We clearly see that, when weight 
w1 is used, the signal from the second antenna (and all spots in line with that TX antenna 
and the receiver array) is suppressed, and vice versa when w2 is applied. Clearly, the 
undesired signal is forced to zero. Furthermore, it can be seen that the larger the distance 
between a given spot (x,y) and the receiver array, the weaker the signal that is received. 
This is the result of applying the free-space path loss model. 
 

 

(a) 
 

(b) 

Figure 2-3: RX antenna array patterns after applying the 
first (a) and second (b) weight vector in free space. 

 

2.4 One Perfectly Reflecting Plane 
 
Here, the scenario of the previous section is extended with one perfectly reflecting plane, 
parallel to the transmitter-receiver line. In addition to the direct paths of the free-space 
case, one indirect path per channel element has to be taken into account due to the 
reflection. At the receiver side, this indirect path can be seen as if it would be a direct path 
from the image of the transmitter, mirrored in the reflecting plane (see Figure 2-4). So, for 
the channel between the p-th TX and the q-th RX antenna this means that, besides the 
direct path, an extra path must be added, virtually being the direct path from the image of 
the p-th TX antenna to the q-th receiver (see Figure 2-4). 
 
Using the same parameters as in Section 2.3 (dTX = 1λ, dRX = 1λ, D = 100λ and Pt = 0.035 
Watts) and with the extra information that Drefl is chosen to be 8λ, the channel matrix and 
the weight vectors can be determined. The antenna patterns after applying both weights are 
given in Figure 2-5. 
 
From these figures, we can see that the reflecting plane at x = 8λ causes an interference 
pattern. Again, we see that applying the right weight vector suppresses the signals from the 
antenna that is by this weight vector considered as interferer. 
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Figure 2-4: Antenna set-up with a perfectly reflecting plane. Only the extra paths that 
have to be taken into account in addition to the direct paths of Figure 2-2 are shown. 

 

 

(a) 
 

(b) 

Figure 2-5: RX antenna array patterns after applying the first (a) and second (b) 
weight vector in a scenario with one perfectly reflecting plane at x = 8λ. 

 

2.5 Two Perfectly Reflecting Planes 
 
In the final scenario that is considered, another perfectly reflecting plane is added to the 
scenario of Section 2.4. Again, the following parameters are used: dTX = 1λ, dRX = 1λ, 
D = 100λ and Pt = 0.035 Watts. Furthermore, we assume that the first reflecting plane is 
positioned at x = 8λ, whereas the other plane is positioned at x = –6λ. Since the two 
reflecting planes are parallel to each other, there will be paths that only arrive at the 
receiver after a multiple of bounces between the two planes. Here, we will only consider a 
maximum of one bounce and two bounces, respectively. The channel matrix and weight 
vectors can be determined for both cases. The RX antenna array patterns after application 
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of the weight vectors in case of a maximum of one and two bounces are shown, 
respectively, in Figure 2-6 and Figure 2-7. 
 
From comparing these figures with Figure 2-5, it becomes clear that the more reflections 
occur, the more chaotic the interference patterns are. In Figure 2-6 and Figure 2-7, we can 
see that the undesired antenna is nulled with a spot, instead of with a beam (like in Figure 
2-3), and that the desired antenna is (almost) located at a local maximum. This maximal 
separation between the wanted and unwanted antenna shows that the signals from both 
antennas can be treaded as uncorrelated (or independent). This observation speaks in 
favour of the robustness of MIMO systems in environments with many reflecting objects, 
i.e., rich-scattering environments. 
 

 

(a) 
 

(b) 

Figure 2-6: RX antenna array patterns after applying the first (a) and second (b) 
weight vector in a scenario with two perfectly reflecting planes (at x = –6λ and 

x = 8λ), where only paths with a maximum of one bounce are taken into account. 

 

 

(a) 
 

(b) 

Figure 2-7: RX antenna array patterns after applying the first (a) and second (b) 
weight vector in a scenario with two perfectly reflecting planes (at x = –6λ and 

x = 8λ), where only paths with a maximum of two bounces are taken into account. 
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2.6 Channel Estimation Errors 
 
The observation of the previous section that MIMO is more robust in rich-scattering 
environments can be confirmed by adding white Gaussian noise to the channel 
observation. This provides insight in the MIMO performance when the MIMO system 
experiences noise. More concrete, it illustrates how the antenna patterns are altered when 
the channel estimation is corrupted by noise. To include the influence of noise, we can add 
independent and identically distributed (i.i.d.) complex Gaussian noise to the four channel 
elements of the 2 × 2 cases of the previous sections. With an average noise power of 10% 
of the average channel element power (i.e., the Signal-to-Noise Ratio (SNR) = 10 dB), and 
the assumption that the average power per channel element is normalised to one, an 
example of the Additive White Gaussian Noise (AWGN) is given by 
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When adding this noise to the channel coefficients of the free space (pure LOS) case of 
Section 2.3 and applying correct scaling to maintain the SNR of 10 dB, the resulting RX 
antenna array patterns after applying the weight vectors are given in Figure 2-8. Adding 
the same noise to the case with two reflecting planes where up to two bounces are 
considered (see Section 2.5), results in the antenna patterns of Figure 2-9. 
 

 

(a) 
 

(b) 

Figure 2-8: RX antenna array patterns after applying the first (a) and second (b) 
weight vector in free space with noise added to the channel observation. 

 
When comparing the results of Figure 2-8 and Figure 2-9 with Figure 2-3 and Figure 2-7, 
respectively, we clearly see that the pure-LOS case strongly suffers from the additive 
noise. This can be explained by the fact that for this case the columns of the channel matrix 
have a strong resemblance (i.e., are highly correlated), see (2.9), resulting in a big error 
when noise is added. For the "richly-scattered" case, the channel matrix is highly 
orthogonal and this property is hardly changed when noise is added. As a result, the 
antenna patterns for the latter case are barely altered. Similar results are achieved when 
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other noise realisations are investigated, from which we can conclude that a MIMO system 
is indeed more robust in environments with many reflecting objects. 
 

 

(a) 
 

(b) 

Figure 2-9: RX antenna array patterns after applying the first (a) and second (b) 
weight vector in a scenario with two perfectly reflecting planes (at x = –6λ and 

x = 8λ), where only paths with up to two bounces are considered, and noise is added 
to the channel observation. 

 

2.7 Conclusions 
 
In this chapter, we showed that, for a communication system with multiple transmit and 
multiple receive antennas, the different signals from the different TX antennas (sent at the 
same frequency) can be separated at the receiver, under the assumption that the right 
weights can be found and applied. The ability of separating the different streams from the 
different transmit antennas, results in a linear growth in data rate with the number of TX 
antennas, by which the potential capacity enhancement of MIMO is intuitively explained. 
Furthermore, for cases with many reflecting paths, it is shown that the undesired antenna is 
nulled by a spot, whereas a local maximum is placed at the position of the desired antenna. 
This maximal separation between the two antennas speaks in favour of the robustness of 
MIMO systems in rich-scattering environments. 





 

3  
 

Multiple-Input Multiple-Output Channel Modelling 

3.1 Introduction 
 
In the ideal case the data rate of MIMO systems grows linearly with the number of TX 
antenna as we explained intuitively in Chapter 2. In general, however, the maximum 
transmission rate in a given bandwidth (i.e., the spectral efficiency) that can be exploited in 
MIMO systems depends on a number of parameters observed at the receiver, including the 
average received power of the desired signal, thermal and system-related noise, as well as 
co-channel interference. Moreover, the multidimensional statistical behaviour of the 
MIMO fading channel is of foremost significance to the system performance (e.g., 
influence of the spatial fading correlation). Therefore, it is important for the designer of a 
MIMO communication system to have an appropriate MIMO channel simulation model. 
Generally, important requirements for such a model are: 
 

1. The representation of real-life MIMO channel statistics according to the targeted 
radio environment and system parameters (like antenna spacing, polarization, 
antenna element directionalities), 

2. The possibility to easily cover a wide range of best-case to worst-case scenarios, 
3. The ease of use and possibility to convey the relevant parameters between various 

groups of researchers to reliably compare results. 
 
In this chapter, a MIMO channel model is introduced, based on these requirements. In 
Section 3.2, a wideband MIMO channel model is introduced, based on a geometric 
interpretation of the communication link, as an extension to the narrowband geometric 
MIMO interpretation of Chapter 2. For various environments, the variations in the different 
paths between transmitter and receiver as function of time, location and frequency, 
generally called fading, can be represented by statistical distributions. For these cases, the 
geometrically based model is transferred to a stochastic channel model. A number of 
distributions, i.e., fading characteristics, are described in Section 3.3. In Section 3.4, a 
wideband MIMO signal model is introduced, which includes the fading characteristics as 
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well as additive receiver noise. Most MIMO algorithms, however, are not introduced as 
wideband, but as narrowband techniques. Therefore, Section 3.5 describes a narrowband 
signal model and its fading statistics. The narrowband model is shown to be a special case 
of the wideband model. An impairment that is specific for multi-antenna systems is spatial 
fading correlation. A simple model to cover this impairment is introduced in Section 3.6. 
  

3.2 A Geometrically Based Stochastic MIMO Channel Model 
 

3.2.1 Continuous-Time Channel Model 
 
Consider a wireless MIMO system, with Nt transmit (TX) and Nr receive (RX) antennas, 
that is operating in an environment with reflecting objects (see Figure 3-1). In such a 
scattering environment, during a transmission, reflections will occur and a transmitted 
signal that is launched by a given TX antenna arrives at a given RX antenna along a 
number of distinct paths. This effect is referred to as multipath. Because of movement of 
the user and/or movement of objects, each of these paths has its own time-varying angle of 
departure, path delay (i.e., excess delay), angle of arrival, and power. Due to constructive 
and destructive interference of the multipath components, the received signal can vary as a 
function of frequency, location and time. These variations are referred to as fading. 
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RX Nr )(tu
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u1(t) 

)(tr
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Figure 3-1: A MIMO communication system operating in a scattering environment. 

 
To model the channel behaviour, we will extend the narrowband geometric MIMO 
interpretation of Chapter 2. The narrowband assumption is dropped, since, in general, the 
fading characteristics are not necessarily flat over frequency. To make a clear distinction 
with the narrowband case of Chapter 2, here, other symbols will be used. 
 
In a MIMO system, all TX antennas transmit simultaneously and on the same carrier 
frequency and, therefore, the received signal on a given RX antenna q consists of a linear 
combination of contributions from the Nt transmitters. Furthermore, when considering the 
contribution of the p-th transmit antenna, due to the multipath the q-th RX antenna records 
a sum of scaled and phase-shifted copies of the original TX signal, where the i-th copy, 
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received at time t, experienced a time delay of, say, τi,qp(t). So, at time t, for a MIMO 
system operating at a carrier frequency fc, the equivalent baseband transfer function from 
the p-th TX to the q-th RX antenna is in the time domain defined by1 ([90, 92]) 
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where Nm(t) is the number of observed multipath components at time t, and γi,qp(t) and 
τi,qp(t) are the gain and delay, respectively, of a signal travelled through the i-th path from 
TX p to RX q and received at time t. Furthermore, δ(t) represents the Dirac function and 
φi,qp(t) = 2πfcτi,qp(t). Note that with c representing the speed of electromagnetic waves in 
air, and with fc = c/λ and τi,qp = di,qp/c, we arrive at the same phase as in (2.8). 
 
The channel transfer function gqp(t,τ) can be physically interpreted as the channel response 
recorded on the q-th RX antenna at time t to an impulse signal from TX antenna p that is 
sent at time t – τ, i.e., τ seconds in the past. Therefore, gqp(t,τ) is called the equivalent 
baseband channel impulse response from TX p to RX q at time t. Note, for clarity, that 
τi,qp(t) does not represent the delay/travelling time an impulse transmitted at time t will 
encounter when travelling through the i-th path between TX p and RX q, but it denotes the 
delay/travelling time of the i-th path signal component having already travelled through the 
channel and arriving on the receive side at time t. 
 
At this point, it is useful to introduce a number of parameters that are commonly used to 
characterise the time-domain channel impulse response: 
 

- The Power Delay Profile (PDP) is defined as the power of the channel impulse 
response as function of τ. For a specific channel impulse response from the p-th TX 
to the q-th RX antenna, gqp(t,τ), it is given by 
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- The mean excess delay is the first moment of the PDP and is, for a specific channel 

gqp(t,τ), defined as ([92]) 
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- The root mean squared (rms) delay spread is defined as the square root of the 

second central moment of the PDP: 
 
                                                 
1 Although more than one scaled and phase-shifted replica of the original signal might arrive at a receiving 
antenna at the same time instant, i.e., through paths with the same length but with different angle of arrivals, 
it is assumed that these paths are summed and, hence, observed as a single path at the receiver. 
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Note that the mean excess delay and rms delay spread are measured relative to the first 
detectable signal arriving at the receiver (i.e., τ0,qp is set to 0). In the remainder of this 
dissertation, we will assume that τ0,qp = 0 s. Furthermore, note that above parameters are 
often averaged over time and/or space. In this way, they don't specify a specific channel 
response as above, but characterise a particular propagation environment. These average 
values are commonly used for stochastic channel modelling as will be described in 
Subsection 3.2.2. 
 
The architecture of a wireless communication system fundamentally depends on its 
envisioned application environments and, as such, the expected range of the rms delay 
spread has a big influence on the system design. If the average rms delay spread is 
sufficiently small compared to the symbol period of the transmitted signals, then all 
multipath components arrive within one signalling interval. Consequently, consecutive 
symbols do not interfere with one another and only amplitude and phase correction is 
required. On the other hand, if the symbol period is small compared to the delay spread, 
then inter-symbol interference (ISI) will result and equalisation is required ([121]).  
 
For the introduction of some other parameters by which a channel can be characterised, it 
is convenient to determine the channel transfer function in the frequency domain. The 
frequency domain representation of the channel impulse response is called the frequency 
response. The frequency response is obtained by computing the Fourier transformation of 
the time domain impulse response: 
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where F{.} denotes the Fourier transform of the corresponding function. In an environment 
with many reflections, a wireless communication channel will consist of many multipath 
components. From above equation, it becomes clear that the channel attenuation is then 
heavily dependent on the frequency. This can be explained by the fact that the phase of a 
multipath component, observed at the receiver, is frequency dependent. As a result, for 
some frequencies the multipath components add constructively while for other frequencies 
they add destructively. Therefore, the frequency response fluctuates over frequency and 
such a channel is generally called a frequency-selective fading channel. 
 
A parameter to quantify the fluctuation of wireless channels over frequency is the 
frequency correlation. It defines the correlation between the channel response at different 
frequencies and is given by 
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where f1 and f2 are two preferably widely-spaced frequencies in the frequency band of 
interest, ∆f is the frequency separation for which the correlation is determined and * 
denotes the complex conjugate. This metric can be averaged over time and/or space in 
order to obtain average values. If the coherence bandwidth Bc is defined as the frequency 
separation for which the frequency correlation function is above 0.9, then the average 
coherence bandwidth is approximately ([90]) 
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where τd in seconds is the rms delay spread averaged over time. If the definition is relaxed 
so that the frequency correlation function is above 0.5, then Bc is about 
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So, the rms delay spread and coherence bandwidth are inversely proportional to one 
another. Note, however, that an exact relationship is hard to obtain and depends on the 
exact channel response and the required frequency correlation. 
 
Based on the relationship between the coherence bandwidth and the rms delay spread, the 
impact of the rms delay spread on the architecture of a wireless communication system can 
also be explained from the coherence bandwidth point of view. If a transmission signal 
occupies a bandwidth smaller than Bc, the channel transfer function that is influencing the 
transmission is approximately flat over frequency and correspondingly only amplitude and 
phase correction is required and no equalisation. The system is said to experience flat 
fading and, consequently, called a narrowband system. When the bandwidth of the 
transceiver is considerably larger than Bc, however, the channel frequency response 
exhibits large fluctuations that need to be equalised in order to have a proper detection. In 
that case, the system is called a wideband system and, as explained above, the fading as 
function of frequency is referred to as frequency-selective fading and it is the counterpart 
of ISI in the time-domain. 
 

3.2.2 Discrete-Time Channel Model 
 
When the system bandwidth is limited, most likely the system is not able to distinguish 
every multipath component, but the receiver observes (weighted) summations of multipath 
components. This can be explained by the fact that the transmit and receive filters, which 
form part of any practical communication system, perform an integrating function and as a 
result rake together the multipath components. 
 
A general flow graph of the communication link between the p-th TX and q-th RX antenna 
is depicted in Figure 3-2 ([121]). At the transmitter, the discrete-time input symbols up(nTs) 
are modulated using a modulation technique and shaping filter with impulse response 
fTX(τ). The modulated signal is transmitted through the channel gqp(t,τ). At the receiver, 
noise is added to the channel output (denoted by vq(t)) and the result is filtered by the 
receiver filter with impulse response fRX(τ). Subsequently, the receiver filter output is 
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sampled with period Ts. Regarding the sampling instants, we assume that the receiver is 
perfectly synchronised with the transmitter. Assuming that sampling results in time 
observations at time instants t = nTs and τ = lTs, where n is the sampling index and l is the 
impulse response tap number, the impulse response of the equivalent discrete-time 
baseband channel, gqp(nTs,lTs), is given by 
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where f(τ) = fTX(τ) * fRX(τ) is the convolution of the transmit and receive filter impulse 
responses, i.e., the combined transmit/receive filter impulse response. Note that, due to the 
filtering operations, the number of nonzero channel taps gqp(nTs,lTs) can be much higher 
than the number of nonzero propagation paths in the corresponding physical channel, 
resulting in a non-causal equivalent discrete-time baseband channel which has an infinite 
number of taps. In practical systems, however, the transmit and receive filters are causal 
and consist of Finite Impulse Response (FIR) filters which in turn results in a causal 
discrete channel impulse response that can be modelled by a (time-dependent) FIR filter 
with a limited number of taps. 
 

fTX(τ) mod. 
technique fRX(τ)gqp(t,τ) Ts 

vq(t)

up(nTs) rq(nTs)

gqp(nTs,lTs)  
Figure 3-2: General flow graph of the communication link 

between the p-th TX and q-th RX antenna. 
 
As example for the non-causal case assume that both the transmit and receive filter are 
ideal low-pass filters with 
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The impulse response of the equivalent discrete-time baseband channel can be shown to be 
([121]) 
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Clearly, the channel impulse response is not causal, but from this example, it becomes 
clear that the filters perform an integrating function and as a result rake together the 
multipath components. 
 
In the remainder of this dissertation, we will assume that the channel transfer function is 
causal. For convenience and without loss of generality, we assume that the multipath 
components within one sampling interval are linearly combined. Then, the coefficients of 
the FIR channel can be written as 
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where Nmin(nTs) and Nmax(nTs) are chosen such that the paths observed at time nTs with 
indices i, with Nmin(nTs) ≤ i ≤ Nmax(nTs) and with an encountered delay τi,qp(nTs), stem from 
the l-th sampling interval of the time-variant channel impulse response, i.e., 
 
 ( ) ( ) ssqpis TlnTlT 1, +<≤ τ . (3.13) 
 
Note that above channel model can be represented by a tapped delay line as shown in 
Figure 3-3, and that l denotes the channel tap index, with l = 0, …, Lqp(nTs) – 1. Lqp(nTs) is 
the channel length and equals the number of channel taps that are required to also include 
the last path with index Nm(nTs) – 1, i.e., 
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where x provides the lowest integer value larger than or equal to x. Let the transmitted 
discrete-time complex baseband signal on the p-th TX antenna as a function of the 
sampling index n be up(nTs), with a bandwidth B ≤ 1/Ts. Since in a MIMO system, all TX 
antennas transmit simultaneously and on the same carrier frequency, the received signal on 
a given RX antenna q consists of a linear combination of contributions from the Nt 
transmitters. Furthermore, under the assumption that the TX antennas are not spaced too 
far apart and that this also holds for the RX antennas, it is reasonable to assume that 
Lqp(nTs) is equal for all p and q, with p = 1, …, Nt and q = 1, …, Nr, and set to L(nTs). 
Then, when omitting the additive noise at the receiver, the baseband signal rq(nTs) 
recorded at the q-th receiver is given by 
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Moreover, to capture all Nr received signals into one equation, the matrix notation can be 
used: 
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where, 
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Figure 3-3: Tapped delay line channel model for time-variant channels. 

 
From this point onwards, only the discrete-time domain is used unless mentioned 
otherwise. To simplify the notations and without loss of generality Ts is dropped and the 
discrete time-domain MIMO channel model is defined by 
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3.2.3 Quasi-Static Discrete-Time Channel Model 
 
When the user and/or objects hardly move during a packet transmission, the MIMO radio 
channel can be considered constant for the respective time interval. Such a channel is 
called a quasi-static channel. In other words, the packet duration is assumed less than the 
coherence time, i.e., the time in which the communication channel can be considered static. 
According to [92] a conservative measure, i.e., a lower bound, for the coherence time Tc is 
given by 
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where fm is the maximum Doppler shift defined by fm = v/λ. Taking indoor wireless LAN 
communication at 5 GHz as an example, we could say that the velocity v of the user will 
not exceed 10 km/h or roughly 3 m/s. In this case, the maximum Doppler shift is 
 

 Hz 50
105103

3
98 ≈

⋅⋅
≈==

fc
vvfm λ

. (3.20) 

 
This Doppler shift leads to a coherence time of Tc ≈ 3.6 ms. So, for this example, the 
assumption that the channel is quasi-static is justified as long as the packet duration is 
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significantly less than 3.6 ms. The lowest communication rate of the IEEE 802.11a 
standard is 6 Mbps ([57]). The maximum IP (Internet Protocol) packetlength equals 1500 
bytes. A transmission of a 1500 byte packet at 6 Mbps would require about 2 ms, so the 
quasi-static assumption is valid for this example. 
 
Under the quasi-static assumption, G(n,l) is independent of n during a packet transmission. 
So, let G(l) denote the quasi-static MIMO channel transfer characteristic of a wireless 
medium observed by a communication system with bandwidth B, then the relation between 
the vectors u(n) and r(n) is defined by the quasi-static wideband MIMO relation: 
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For indoor environments, measurement campaigns have indicated that the amplitudes of 
the elements of G(l), |gqp(l)|, are approximately Rayleigh distributed ([48, 62, 71, 77]). This 
can be understood intuitively from the reasonable assumption that an indoor environment 
contains a large number of scatterers and, as a result, a channel tap consists of a large sum 
of multipath components (see (3.12)). When the multipath components have similar gains 
and the phase is uniformly distributed between 0 and 2π, then, according to the Central 
Limit Theorem ([90]), the resulting complex channel coefficients are complex Gaussian 
distributed (and their amplitude is Rayleigh distributed). So, the geometric-based model 
can be transformed to a stochastic model. As an extension to this model, in Sections 3.3 
and 3.5 more stochastic fading characteristics are defined. The assumptions made to arrive 
at a stochastic model allow for direct modelling of the components of G(l) instead of fully 
describing the physical geometric propagation paths, thus, resulting in more convenient 
and faster channel modelling. 
 
Although the channel is assumed static for a packet transmission, it is commonly known 
that the multipath characteristics change over time, due to movement of the user, 
movement of objects in the environment, etc. This is modelled by changing G(l) on a 
packet by packet basis according to given fading statistics (see Sections 3.3 and 3.5). Note 
that above channel model can be represented by a tapped delay line that describes the 
linear transformation between u(n) and r(n) as shown in Figure 3-4. 
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Figure 3-4: MIMO signal model represented by a tapped delay line. 

 
To simplify the channel modelling, it is furthermore assumed that the average power of all 
transmission coefficients for a given tap, i.e., of all elements of G(l) is identical for a given 
tap, so 
 

 ( )[ ] ( ) rtqp NqNplPlgE , ,2, 1 and , 2, 1, allfor  , 
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P(l), with l = 0, …, L–1, is the discrete-time equivalent of the continuous-time PDP given 
in Subsection 3.2.1. The total power of the discrete-time PDP, i.e., the large-scale channel 
gain encompassing distance-dependent decay, is given by 
 

 ( )∑
−

=

=
1

0

L

l
c lPP . (3.23) 

 
As explained for the continuous-time case, the mean excess delay is the first moment of the 
PDP. When performing the calculation in the time domain instead of the "sampling 
domain", the mean excess delay is defined as, 
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In the discrete-time case, the rms delay spread equals: 
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where 
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Note that these delays are measured relative to the first detectable signal arriving at the 
receiver1 (i.e., l starts at 0). 
 

                                                 
1 The rms delay spread does not depend on the start of l, but the mean excess delay does. 

3.3 Fading Characteristics of Indoor-like Environments 
 

3.3.1 Motivation 
 
From fundamental work published in [48, 80, 97] and many other measurements reported 
in literature, it can be deduced that the average received multipath power of a transmitted 
impulse in indoor-like environments tends to fall off exponentially over time. Furthermore, 
in general, the amplitudes of the channel tap coefficients are Rayleigh distributed. In case 
the communication channel also has a Line-of-Sight (LOS) or specular component, one 
can imagine that, generally speaking, the first path is Ricean distributed. The physical 
mechanisms driving the indoor-like characteristics are mainly based on: 
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- slow movement of objects and/or transceivers, resulting in a negligible Doppler 
shift (see Section 3.2); 

- (in case of a LOS or specular component) a component that illuminates the arrays 
entirely and is thus deterministic from antenna to antenna on a packet by packet 
basis; 

- the large number of reflectors within a typical indoor-like environment (resulting in 
Rayleigh fading); 

- the propagation loss characteristic, where longer propagation paths arriving linearly 
later in time have logarithmically weaker energy (see Figure 3-5); 

- analogue-to-digital conversion, which results in the fact that in the digital domain 
the channel is monitored at the sampling rate, leading to equidistant time 
observations of, e.g., the channel impulse response. 

 
The above points have led to simplified channel models as used in [21, 33, 43, 46]. These 
models assume a fixed number of channel taps with equidistant delays and an 
exponentially decaying PDP, with or without a specular component added to the first tap. 
To explicitly include the PDP, from this point forward we will normalise G(l), such that 
every element of G(l) has an average power of one. This results in the discrete sampling-
domain wideband MIMO channel model: 
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The wideband MIMO channel models, as described in the following subsections, result 
from a combining of the simplified models given in [21, 33, 43, 46]. 
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Figure 3-5: Exponentially decaying Power Delay Profile 

 

3.3.2 Wideband Rayleigh Fading Model 
 
When no strong LOS or specular path is present, the large number of reflectors within a 
typical indoor-like environment results in Rayleigh fading ([92]). For a MIMO system 
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operating in such a rich-scattering environment, when the antenna spacing is chosen equal 
to or larger than half the carrier wavelength, the channel coefficients can be assumed i.i.d. 
([36]). To model this, G(l) in (3.27) is defined as Giid(l). The elements of the Nr × Nt 
dimensional channel transfer matrix Giid(l) are i.i.d. circularly-symmetric complex 
Gaussian variables with zero mean and unit variance, with an independent realisation for 
all l, l = 0, 1, …, L–1. The definition of a circularly-symmetric complex Gaussian random 
variable, say z, with zero mean and variance σ2 is given by z = x + jy with x and y being 
i.i.d. zero mean real Gaussian variables with variance σ2/2. Equivalently, each entry of 
Giid(l) has uniformly distributed phase and Rayleigh distributed magnitude. Furthermore, 
to consider the quasi-static property of the channel, an independent realisation of Giid(l) is 
generated on a packet by packet basis. 
 
To model the effect that longer propagation paths arriving linearly later in time have 
logarithmically-weaker energy (see Figure 3-5), the PDP is characterised by the one-sided 
exponentially decaying function with equidistant delays 
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where τd represents the rms delay spread defined by (3.25), and fs = 1/Ts denotes the 
sampling frequency. 
 

3.3.3 Wideband Ricean Fading Model 
 
An unobstructed direct path or a very strong path between transmitter and receiver is called 
the LOS or specular component, respectively. To model such a component, it is reasonable 
to assume that the corresponding path travels the shortest possible distance between 
transmitter and receiver and, thus, arrives before any multipath components. Therefore, the 
LOS or specular path will be modelled being part of the first tap of the MIMO channel 
impulse response. The components due to scattering can still be modelled following the 
NLOS model of Subsection 3.3.2. Note that in this case the distribution of the first tap is 
modified to a Ricean distribution. 
  
Let the Nr × Nt matrix Gspec denote the normalised LOS or specular part of the MIMO 
communication channel, then we can define G(l) of (3.27) as 
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From (3.27) it follows that for the above model, the total channel gain is given by 
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In these equations the parameter K, known from single-antenna Ricean fading ([92]), 
denotes the ratio between specular-to-scattered energy according to K = Pspec/Pscatt. Note 
that in case K is set to zero, this model reduces to the wideband Rayleigh fading channel 
model described in the previous subsection. 
 
Two cases can be distinguished for the definition of a LOS component. Firstly, the case 
where the TX-RX distance is significantly larger than the antenna spacing, referred to as 
the far-field case, and, secondly, the situation where TX-RX distance is only up to tens of 
antenna spacing. The latter is called the near-field case. In this dissertation, we will only 
consider far-field communication, but for completeness, we will include some notes about 
the near field. 
  
As defined in [33], when the TX and RX are well in the far field of one another, the LOS 
or specular component is given by the "product" of the steering vectors at TX and RX: 
 
 ( ) ( )TXTXRXRXspec θθ TaaG = , (3.31) 
 
where aTX(θTX) and aRX(θRX) are the steering vectors at TX and RX of which the entries 
denote the phase per antenna element that is applied or observed for a given Angle of 
Departure (AoD) θTX or Angle of Arrival (AoA) θRX, respectively. (.)T denotes the 
transpose of the corresponding vector (or matrix). As example, the steering vector of an 
Nx-element linear array is given by 
  
 ( )( ) ( ) ( )( )( )T

xNdjdj θπθπ cos12expcos2exp1 −L , (3.32) 
 
where θ is the AoA or AoD and d is the antenna spacing in wavelengths. When the AoD 
and AoA are unknown, we could assume, for simplicity, that they are random i.i.d. 
variables taken uniformly from [0,2π〉 (and changing on a packet by packet basis). 
 
If the antenna configuration is also unknown, in order to still model the specular 
component, we could simply assume that for each channel realization, the steering vectors 
are randomised according to the following expression: 
 
 ( ) ( ) ( )( )TNx

jjj φφφ exp...expexp 21=a , (3.33) 
 
where the φx are i.i.d. variables taken uniformly from [0,2π〉 and Nx equals the number of 
transmit or receive antennas for the TX or RX steering vector, respectively. This model is 
appropriate to describe a Line-of-Sight scenario in which, again, the RX and TX antenna 
structures are well in the far field of one another but in which we do not want to become 
concrete about antenna spacing, polarization, orientation etc. 
 
Note that a "product" of two vectors results in a rank-one matrix (Appendix A.1.5). From a 
MIMO perspective, such a channel is ill conditioned and does not have a high capacity (see 
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Section 4.4). So when K → ∞, the capacity for the far field case goes to that of a rank-1 
channel. 
 
When the TX and RX are in each others near field, the LOS component might have a 
higher rank than one. Since the TX-RX distance is relatively small, two LOS paths 
originating from different TX antennas to the same RX antenna cannot be assumed to have 
the same AoD. Therefore, to model this, we must consider every single specular channel 
element as, e.g., is done in Chapter 2 and not simply take the "product" of the steering 
vectors. As a result, the matrix of the LOS component for the near-field case might be 
better conditioned and its capacity might be higher than that of a rank-1 channel. 
 
Finally, in Figure 3-6, as an example, an average and instantaneous PDP of the wideband 
stochastic Ricean model, as described in this section, is shown for K = 10. 
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Figure 3-6: Example of generated average and instantaneous Power Delay Profiles 

for an rms delay spread of 10 sampling intervals and K = 10. 
 

3.3.4 Uniformly Distributed PDP Model 
 
For theoretical analysis, it is useful to introduce a hypothetical channel model that is 
referred to as the uniformly distributed PDP model. The fading properties of this model are 
equivalent to the wideband Rayleigh fading model, whereas the PDP is a block function, 
such that 
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Note that for this PDP, following (3.25), the rms delay spread (in samples) can be shown to 
be 
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3.4 Wideband MIMO Signal Model 
 
As explained in Section 3.1, besides the propagation characteristics the receiver also 
observes thermal and system related noise, and sometimes co-channel interference. 
Thermal noise is treated in this section, system related impairments are tackled in Chapter 
6, but Co-channel interference is outside the scope of this dissertation. 
 
The thermal noise is usually modelled as Additive White Gaussian Noise (AWGN) ([99]). 
We will assume that we also can model the baseband equivalent noise as AWGN. With 
this assumption, the following wideband MIMO signal model is introduced: 
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where v(n) represents AWGN at the n-th sample with Nr i.i.d. zero-mean, circularly-
symmetric complex Gaussian elements with variance σv

2. The elements of u(n) are 
assumed to be zero mean, uncorrelated random variables with variance σu

2. When we 
furthermore assume that the average channel gain Pc is 1, then, the expected SNR per 
receive antenna can be shown to be ρ = Ntσu

2/σv
2. Note that, for a fair comparison, we 

want to keep the total TX power the same as in the Single-Input Single-Output (SISO) 
case. Therefore, the power per TX antenna is scaled down by Nt. 
 

3.5 Stochastic Narrowband MIMO Channel Models 
 

3.5.1 Motivation 
 
Since most MIMO algorithms are proposed as narrowband techniques, it is convenient to 
specify narrowband MIMO channel models. These narrowband models can be seen as 
special cases of the wideband models: the channel is assumed to be flat over frequency, 
i.e., the system bandwidth B is assume to be much smaller than the coherence bandwidth of 
the channel Bc. Hence, only the first tap of (3.27), G(0), is assumed to have a significant 
contribution, i.e., the channel length L is set to one. This results in a PDP 
 

 ( )




≠
=

=
. 0for , 0
, 0for , 

l
lP

lP c  (3.37) 

 



40 Chapter 3  Multiple-Input Multiple-Output Channel Modelling  

To distinguish from the wideband model, we will introduce a narrowband signal model 
following the notation of Chapter 2. When omitting the time index and assuming that the 
average path loss is normalised, such that Pc = 1, the result is: 
 
 nHsx += , (3.38) 
 
where H equals G(0), the narrowband MIMO transmit vector s is equal to u(n) under the 
assumption that B << Bc, the receive vector x equals r(n) with B << Bc, and n is AWGN, 
equivalent to v(n). 
 

3.5.2 Flat Rayleigh Fading Model 
 
To specify a scenario of frequency-flat Rayleigh fading, a model is introduced called flat 
Rayleigh fading model. This is a reference model, which can be envisaged as a 
simplification of dense scattering occurring locally only. The flat Rayleigh fading MIMO 
model can be obtained from its wideband counterpart, introduced in Subsection 3.3.2, by 
setting the channel length L to 1. To model uncorrelated frequency-flat Rayleigh fading, H 
is defined as an Nr × Nt dimensional matrix, denoted by Hiid and having i.i.d. zero-mean, 
circularly-symmetric complex Gaussian elements with a variance of one. 
 

3.5.3 Flat Ricean Fading Model 
 
The frequency-flat Rayleigh fading model of Subsection 3.5.2 can be extended with a LOS 
or specular component. This results in a model that is equivalent to the first tap of the 
wideband Ricean model of Subsection 3.3.3: 
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where Hiid and Hspec are the complex Gaussian distributed matrix and specular component 
equivalent to Giid and Gspec defined in Subsections 3.3.2 and 3.3.3, respectively, and K 
denotes the Ricean factor. 
 

3.5.4 Pure-LOS versus AWGN MIMO Channel Model 
 
For a single antenna (i.e., SISO) system operating in a Ricean fading environment and with 
additive white Gaussian noise, when the Ricean factor K goes to infinity, the result is an 
AWGN channel. This can be easily seen by filling in the SISO variant of the Ricean 
distribution of Subsection 3.5.3 into the SISO variant of the signal model of (3.38) and 
assuming K → ∞.  
 
For the MIMO models introduced in Subsections 3.3.3 and 3.5.3, however, the result 
would be that the channel is completely defined by a LOS or specular component, since for 
K → ∞, H = Hspec (see Subsection 3.5.3). In case the TX and RX are well in the far field of 
one another, recalling (3.31), this yields 
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 ( ) ( )TXTXRXRXspec θθ TaaHH == . (3.40) 
 
As mentioned in Subsection 3.3.3, from a MIMO perspective, such a channel is ill-
conditioned and does not have a high capacity. 
 
The highest MIMO capacity is achieved by an orthogonal MIMO channel. To examine 
AWGN properties for a MIMO system, it is convenient to introduce a channel model based 
on such an orthogonal channel. Keeping the property in mind that the average power of all 
elements of H should be equal to one, we propose the following AWGN MIMO channel 
model (under the restriction that Nr ≥ Nt): 
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where FN equals the N × N Fourier matrix, defined by ([113]) 
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with W = exp(–j2π /N), and 0M × N is the M × N all zeros matrix. 
 
A physical interpretation of this model can be found as follows. Assume that all Nt TX 
antennas can be considered as independent omni-directional sources, located in the far 
field and that their distance to RX antenna 1 is equivalent and equal to an integer number 
of wavelengths. Furthermore, assume a linear RX array. In free space, at the receiver, the 
incoming wavefront from every TX antenna will be observed (approximately) as a planar 
wavefront. For a linear array with Nr antennas, such a wavefront coming in from direction 
θ, as depicted in Figure 3-7, results in a steering vector given by 
 
 ( )( ) ( ) ( )( )( )T

rNdjdj θπθπ cos12expcos2exp1 RXRX −L , (3.43) 
 
where dRX denotes the RX antenna spacing in wavelengths. 
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Figure 3-7: An incoming planar wavefront from direction θ. 
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For above sketched situation, the p-th column of Horthogonal defined by (3.41) must equal the 
steering vector of a planar wavefront coming from direction θp, i.e., the p-th TX antenna is 
located at an angle θp with respect to the RX array. Thus, the (q,p)-th element of Horthogonal 
must be equal to the q-th element of the steering vector with angle θp: 
 
 ( )( )( ) ( ) ( )( )p

qp
r qdjNj θππ cos12exp2exp RX

11 −=− −− . (3.44) 
 
This results in the relation 
 

 ( ) ( )
RX

1cos
dN

p

r
p

−
−=θ . (3.45) 

 
When dRX is equal to one wavelength, this results for, e.g., a 3 × 3 channel in the directions 
of the three transmit antennas as given in Figure 3-8. More generally, θp can be found 
geometrically as the angle of the line that goes through the origin and through the crossing 
point between the circle with a radius of one wavelength and the line x = – (p – 1)/Nr 
wavelengths. 
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Figure 3-8: An example of the angles of arrivals for a 3 × 3 orthogonal MIMO 

channel. The three RX antennas are denoted by the grey dots. Furthermore, the 
direction of the TX antennas is shown. They are located in the far field. 

 

3.6 Spatial Correlation 
 
In general, the MIMO system performance deteriorates when spatial correlation is present. 
Therefore, if system designers have enough spatial freedom, they should design the system 
such that spatial correlation is reduced to a minimum. For instance, when, for indoor-like 
environments, the antenna spacing is chosen to be equal or larger than half the carrier 
wavelength, the spatial correlation can be assumed negligible ([36]). If space is the limiting 
design factor, then spatial correlation should be taken into account in the channel model. 
 
In [25], the spatial (or fading) correlation for a narrowband flat-fading MIMO channel H, 
where the elements of H are zero mean and have an average power of one, is defined as 
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 ( ) ( )[ ]H

H E HHR vecvec= , (3.46) 
 
where vec(H) denotes the NrNt × 1 dimensional vector composed by stacking the columns 
of H, and H denotes the Hermitian transpose, i.e., conjugate transpose of a matrix. Thus, 
the correlation between the fading path from TX a to RX b, hba, and the fading path from 
TX p to RX q, hqp, which equals 
 
 [ ]*

qpbayx,qp hhE=ρ , (3.47) 
 
can be found on position ( (a–1)Nr+b , (p–1)Nr+q ) of RH. Note that when the elements of 
H are not zero mean and/or not having a unit average power, a correlation measure as 
defined in [65] must be used (here extended for the complex case): 
 

 
[ ] [ ] [ ]

[ ] [ ]( ) [ ] [ ]( )2222

**

,

|||| qpqpbaba

qpbaqpba
qpyx

hEhEhEhE

hEhEhhE

−−

−
=ρ . (3.48) 

 
In [15, 22, 25, 86, 134], the correlation between different MIMO channel elements is 
modelled with the assumption that the correlation among receive antennas is independent 
from the correlation between transmit antennas (and vice versa). The underlying 
justification for this approach is to assume that only immediate surroundings of the antenna 
array impose the correlation between array elements and have no impact on correlations 
observed between the elements of the array at the other end of the link, which is a 
reasonable assumption for indoor environments ([64]). Based on this assumption, the 
following model is suggested: 
 
 RXTX RRR ⊗= T

H , (3.49) 
 
where ⊗ represents the Kronecker product. The intuitive explanation of the equation is that 
the correlation between two elements of the channel matrix is the product of the correlation 
seen from the transmitter side, RTX (Nt × Nt dimensional), and the correlation seen from the 
receiver side, RRX (Nr × Nr dimensional). Under the assumption that the elements of H are 
zero mean and have a variance of one, the correlation matrices can be found as follows: 
 

 ( )[ ] r
qHq NqqE ,...,1,  allfor , TX == hhR , (3.50) 

 
 [ ] t

H
pp NppE ,...,1, allfor , RX == hhR , (3.51) 

 
where hq is the q-th row of H and hp is the p-th column of H. 
  
To generate independent narrowband flat-fading MIMO channel realisations with spatial 
correlation, one can use ([86]) 
 
 ( )iid

2
1

unvec hRH H= , (3.52) 
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where hiid is an NtNr × 1 stochastic vector with i.i.d. zero-mean unit variance complex 
Gaussian elements and unvec(.) is the reverse of the vec(.) operation. The question is how 
to determine the "square-root" of RH. To answer this question, we need to state some 
observations: 
 
1. RH is Hermitian: 
 

 ( ) ( )[ ]( ) ( ) ( )( )[ ]
( )( ) ( )[ ] . vecvec

vecvecvecvec

H
HHH

HHHHH
H

E

EE

RHH

HHHHR

==

==  (3.53) 

 
2. A Hermitian matrix can be diagonalised by a unitary matrix ([113]), so, RH can be 

diagonalised as 
 
 H

H
H ΛUUR = , (3.54) 

 
where ΛH is a diagonal matrix with the eigenvalues of RH on its diagonal (i.e., the 
eigenvalue matrix) and the columns of U equal the corresponding orthonormal 
eigenvectors, thus UHU = I, which is the definition of a unitary matrix.  
 

3. RH is nonnegative definite (see Appendix A.1.7), because for all nonzero complex 
vectors z it follows that 
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thus, the eigenvalues of RH are nonnegative real numbers. 

 
Based on these three observations, we may write 
 

 ( ) ( ) 2
1

2
1

2
1

2
1

2
1

2
1

H

H

HH

H

HHH
H

H
H

H RRUΛUΛUΛΛUUΛUR ==== , (3.56) 
 
from which we obtain the "square-root" of RH. Above observations also hold for RTX and 
RRX, so from (3.49) it follows that 
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where the property is used that, for any matrix A, B, C and D with proper dimensions, 
(AB) ⊗ (CD) = (A ⊗ C)(B ⊗ D). Based on the Kronecker product identity that for any 
(complex) M × N matrix A, N × P matrix B, and P × Q matrix C (see Appendix A.1.10), 
 
 ( ) ( ) ( )BACABC vecvec ⊗= T , (3.58) 
 
(3.52) can be rewritten as 
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 (3.59) 

 
where Hiid = unvec(hiid) is a stochastic Nr × Nt matrix with i.i.d. circularly-symmetric 
complex Gaussian zero-mean unit variance elements. This result is equivalent to the spatial 
correlation model introduced in [22]. Note that, according to (3.56), the "square-root" of 
RH is not Hermitian. Likewise, the "square-roots" of RTX and RTX are not Hermitian. 
 
When system simulations need to be carried out, one way to proceed is to explicitly state 
specific correlation matrices RTX and RRX covering various propagation scenarios. To 
obtain these specific correlation matrices, either ray tracing or correlation measurements 
have to be performed representing different scenarios. This approach is cumbersome and 
has as major disadvantage that the essential MIMO properties (relating to the achievable 
MIMO capacity) are concealed in a large number of parameters, namely, the various 
correlation matrix entries and, therefore, it is hard to cover a wide range of best-case to 
worst-case scenarios. This leads to the question how to reduce this amount of parameters.  
 
We start with the observation that the capacity and BER performance are frequently used 
measures to evaluate MIMO systems. Below, we introduce a compact representation of the 
spatial correlation that nevertheless results in an equivalent capacity and BER 
performance. 
 
The capacity of an Nr × Nt narrowband MIMO channel H is given by ([36], Section 4.4) 
 

 







+= H

t
N N

C
r

HHI ρdetlog2  bits/s/Hz, (3.60) 

 
where ρ represents the SNR per receive antenna and IN is the N × N dimensional identity 
matrix. Furthermore, the channel matrix H is normalised, meaning that the elements of H 
have an average power of one. 
 
When spatial correlation is present, the capacity equals 
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With the equality det(I + AB) = det(I + BA), this can be rewritten to 
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For high SNRs, we get 
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since the determinant of a product is the product of the determinants. So, apparently, the 
capacity distributions of two different situations will be the same when the determinant of 
the RTX's and RRX's are equal. Or, it must be possible to introduce a model that is, in a 
capacity sense, a mapping of measured correlation matrices. To that end, we require 
 
 ( ) ( )measTX,modTX, detdet RR = ,  (3.64) 
 
 ( ) ( )measRX,modRX, detdet RR = .  (3.65) 
 
Note that in case the correlation matrices of the model would be set equal on both sides of 
the communication link, i.e., Rmod = RTX,mod = RRX,mod, we would get the criterion 
 
 ( ) ( ) ( )measRX,measTX,mod detdetdet RRR = .  (3.66) 
 
Now the question is if there exists a unique solution for the requirements (3.64) and (3.65). 
To answer that question, note that, like RH, both RTX and RRX are nonnegative definite. 
According to Hadamard's inequality for an N × N nonnegative definite matrix A ([54]), 
 

 ( ) ∏
=

≤
N

i
iia

1

det A , (3.67) 

 
where aii represents the i-th diagonal element of A. For the correlation matrices RTX and 
RRX this means that det(RTX) ≤ 1 and det(RRX) ≤ 1. Furthermore, since the determinant of a 
matrix is the product of the eigenvalues of that matrix ([113]) and we have shown at the 
beginning of this section that the eigenvalues of a nonnegative definite matrix are real and 
nonnegative, this yields det(RTX) ≥ 0 and det(RRX) ≥ 0. So, the determinant of the 
measured correlation matrices will always be real, larger than or equal to zero and less than 
or equal to one. 
 
Next, it is shown that a unique match can be found with respect to capacity using the 
following simple and generic definitions for the transmitter and receiver correlation: 
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where rTX and rRX represent (real-valued) correlation coefficients. Note that a similar 
model has been introduced in [74] with the difference that in [74] the correlation is defined 
as R = E[HHH]. The most powerful property of this model is that, when ranging the 
coefficients between 0.0 and 1.0, we can go from fully uncorrelated scenarios (all off-
diagonal elements of both matrices equal to 0.0) to fully correlated scenarios (all entries 
equal to 1.0). Another property is the simple form of the determinants of the matrices. The 
determinant of, e.g., RTX,mod can be shown to be 
 
 ( ) ( ) 12

TXmodTX, 1det −
−= tNrR . (3.70) 
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Figure 3-9: The determinant of the correlation model matrix RTX,mod versus the 

correlation coefficient rTX for a various number of TX antennas. 
 
Finally, it can be shown that the determinant for the modelled matrices is monotonically 
decreasing in the range of interest, e.g., RTX,mod as function of rTX is monotonically 
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decreasing for 0 ≤ rTX ≤ 1 (see Figure 3-9 for Nt is 2, 3 and 4). Based on these 
observations, it can be concluded that there will always be a unique solution that satisfies 
the criteria (3.64) and (3.65). 
 
Since a mathematical link is found to match the MIMO capacity of measured correlation 
matrices with that of the model, we can suffice with one example. The result is presented 
for complex correlation matrices measured in a picocell environment ([68]) and given by 
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For these measured matrices, it can be shown that det(RTX,meas) = 0.2372 and det(RRX,meas) 
= 0.2796, respectively. From the criteria (3.64), (3.65), 0 ≤ rTX ≤ 1, and 0 ≤ rRX ≤ 1, we 
obtain rTX = 0.6172 and rRX = 0.5883. With these results, the capacity of the measured 
correlation matrices can be compared with that of the model. Note that for every realisation 
of Hiid, (3.61) produces a different instantaneous capacity value. The average of these 
capacity values, i.e., the ergodic capacity, as function of the SNR per receive antenna is 
shown in Figure 3-10 for the measured and modelled correlation matrices. From these 
curves, we indeed see that the match is perfect, even for low SNR values. 
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Figure 3-10: Ergodic capacity versus SNR per RX antenna for measured and 

modelled spatial correlation for a 4 × 4 system. 
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Obviously, the introduced spatial correlation model may not be an accurate model for some 
real-world scenarios, but it is a simple double-coefficient model that allows one to study 
the effect of correlation on the MIMO capacity in an explicit way. Moreover, with the 
criteria (3.64) and (3.65), we can mathematically link it to measured correlations. A 
mathematical match in BER performance can also be obtained, but the matching criteria 
are somewhat different. To determine these criteria, a BER analysis needs to be performed. 
Such an analysis depends on the chosen MIMO algorithm and, therefore, this analysis is 
performed at the end of Chapter 4, in Section 4.12. 
 
In order to simplify the model further, for small rTX and rRX (much smaller than 1) we can 
discard the higher order terms in (3.68) and (3.69), resulting in tridiagonal matrices. As an 
example, for a 4 × 4 system this leads to 
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This can be viewed as approximating a scenario in which any pair of adjacent antenna 
elements is correlated, whereas any other pair exhibits independent fading. 
 
For further simplification, we can set rTX = rRX = r, which leads to a single-parameter 
MIMO correlation model. Now we can depict the capacity as function of r for the 
introduced "exponential" spatial correlation model and its derivative, the tridiagonal 
model. The average capacity, i.e., the ergodic capacity, for a 4 × 4 system and an SNR per 
RX antenna of 20 dB is given in Figure 3-11 for the exponential and tridiagonal correlation 
models together with the capacity for uncorrelated (full rank) and fully correlated (rank-1) 
fading scenarios. Clearly, the tridiagonal correlation model is only valid for small r, 
whereas the exponential model ranges from the fully uncorrelated to the totally correlated 
scenario by simply changing r from 0 to 1. 
 
The ergodic full-rank capacity in Figure 3-11 is found by determining 
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where E[.] denotes the expectation. The ergodic rank-1 capacity is found by setting H 
equal to 
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where 1N × M is the N × M all ones matrix and h is a circularly-symmetric complex Gaussian 
random variable with unit variance. Since in the latter case all channel elements are fully 
correlated, it is obvious that such a channel has only one eigenmode, with a gain equal to 
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the nonzero eigenvalue of HHH, i.e., NtNr|h|2. So, the ergodic rank-1 capacity can be shown 
to be 
 

 ( )[ ]2
2 1log hNEC r ρ+= . (3.76) 
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Figure 3-11: Ergodic capacity versus correlation coefficient r for different correlation 

models, for a 4 × 4 MIMO system and an SNR of 20 dB per RX antenna. 

 
The fact that the tridiagonal model is only valid for small r can be explained by verifying if 
the tridiagonal structure satisfies the observation made above that a correlation matrix is 
nonnegative definite. For a nonnegative definite matrix, the eigenvalues are real and 
nonnegative. The eigenvalues of 
 

 



















===

100
10

01
001

RX,TX,

r
rr

rr
r

HH RRR , (3.77) 

 
can be found using Appendix A.1.2, and are given by 
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In the range 0 ≤ r ≤ 1, λ4 becomes negative for r > 2/(1+√5) ≈ 0.618, resulting in a 
negative definite matrix and, thus, leading to an incorrect model. As shown in Figure 3-11, 
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this result indeed corresponds to the region where the capacity of the tridiagonal model 
goes up again, when the correlation r exceeds 0.618. When setting r to 2/(1+√5) and 
checking the amount of nonzero eigenvalues of HHH, it can be observed that HHH still has 
3 nonzero eigenvalues, leading to a 3 × 3 ergodic capacity of approximately 16.7 bits/s/Hz. 
This explains the capacity level of the tridiagonal model in Figure 3-11 at r ≈ 0.618. 
 
For the cases where the number of TX and RX antennas are set equal and are ranging from 
3 to 25, the r value above which the tridiagonal model becomes negative definite is given 
in Figure 3-12. From this figure, it can be concluded that the spatial model based on the 
tridiagonal structure is valid for values of r that are smaller than 0.5.  
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Figure 3-12: The region above which the matrices of the 
tridiagonal correlation model are not longer valid. 

 
Note that the spatial correlation model described in this section is a narrowband model. To 
take spatial fading correlation into account in a wideband channel model, a Correlation 
Delay Profile (CDP) must be introduced. This can be explained by the intuition that in real-
world environments, the first channel taps are mainly determined by a few strong paths, 
e.g., the LOS path and some dominant reflections, whereas towards the last taps of the 
channel impulse response, the spread of the AoD and AoA, i.e., the angular spread, is 
omni-directional with many (equally strong) contributing paths. This results in a high 
correlation coefficient at the beginning of the CDP and low values at the end. Two 
examples of a CDP are given in Figure 3-13, namely, the linearly and exponentially 
decaying CDP. For convenience, we used the same horizontal scale as for Figure 3-6. 
 
Finally, note that in LOS scenarios, the specular component inherently includes spatial 
correlation and, thus, the correlation matrices as described in this section are not needed for 
the specular component. Hence, the extension of the above to include a LOS component is 
straightforward. 
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Figure 3-13: Two examples of a Correlation Delay Profile for an rms delay spread of 

10 sampling intervals; linearly and exponentially decaying CDP. 
 

3.7 Conclusions 
 
In this chapter, a stochastical wideband MIMO channel model is introduced based on a 
geometric contemplation. The result is a channel model that models the typically large 
number of channel parameters by a very few carefully selected ones. Since the model 
consists of only a few parameters, the ease of use is high. Two of the selected parameters 
are introduced to model the two most critical impairments for MIMO, namely a LOS 
component and spatial correlation. 
 
With respect to spatial correlation, we introduced a simple representation of spatial 
correlation in MIMO radio channels. For the frequently used evaluation measures of a 
MIMO system, namely capacity and BER performance (see Section 4.12), the amount of 
parameters representing the spatial correlation can be reduced to at most two. With a 
proper choice of these coefficients, the correlation can be varied controllably from the 
totally uncorrelated scenario to the fully correlated scenario. This simplified correlation 
model allows one to perform simulations with spatial correlation, while it is not required to 
explicitly specify the hardware (e.g. antenna) setup and wave propagation environment to 
include the spatial correlation. Altogether, this makes the model powerful, yet simple to 
use. 
 



 

4  
 

Flat-fading MIMO Techniques 

4.1 Introduction 
 
Besides the channel conditions (see the previous chapter), also the structure of the transmit 
signal of a MIMO system has a strong impact on the achievable capacity and performance. 
In addition, the signal design directly influences the complexity of the transmitter and, 
particularly, the receiver. These observations have led to numerous research activities to 
proper MIMO techniques. Basically, the proposed schemes can be split in two groups: 
Space Time Coding (STC) ([116]) and Space Division Multiplexing (SDM) ([36, 93, 
132]). STC increases the robustness/performance of the communication system by coding 
over the different transmitter branches, while SDM achieves a higher data rate by 
transmitting independent data streams on the different transmitter branches simultaneously 
and at the same carrier frequency. These basic concepts have been the basis for various 
flavours of transmission approaches, which resulted in a multiplicity of candidate 
transmission schemes. Combined with corresponding receiver techniques, these schemes 
offer a variety of trade-offs between capacity-attainment capability, frame error-rate 
performance, computational complexity/simplicity and sensitivity to channel/interference 
estimation mismatch. In Section 4.2, an overview of some standard MIMO transmit 
techniques is given. We will restrict ourselves to narrowband techniques, and thus the flat-
fading channel models of Chapter 3 are used. A method to extend these techniques to 
wideband applications is treated in Chapter 5. 
 
Based on the different techniques that are highlighted, a conceptual unified view on MIMO 
is introduced in Section 4.2. Since the main goal of this dissertation is the search for data 
rate enhancement, SDM is the most interesting technique. Moreover, recent findings in 
literature have shown that, under certain conditions, SDM together with one-dimensional 
outer coding can outperform space-time codes ([18, 63, 148]). 
 
After the introduction of the MIMO signal model in Section 4.3, the capacity of MIMO 
channels is determined and a Packet Error Rate (PER) lowerbound is formulated based on 
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the capacity in Section 4.4. In Section 4.5, the relation between the SNR per receive 
antenna and the energy per bit versus noise density (Eb/N0) for MIMO is defined. 
 
Section 4.6 through Section 4.10 describe various SDM algorithms, namely, Zero Forcing 
(ZF), Minimum Mean Squared Error (MMSE), ZF with Successive Interference 
Cancellation (SIC), MMSE with SIC, and Maximum Likelihood Detection (MLD). For 
ZF, MMSE and MLD, soft-decision output algorithms are defined. Furthermore, an error-
rate performance analysis is performed for ZF and MLD. The error-rate performance of the 
algorithms with and without outer coding is compared in the next section. 
 
Another method that is used to compare the different SDM techniques is by determining 
the complexity of the different algorithms in terms of number of additions and 
multiplications. The resulting complexity numbers are a good measure for the final 
complexity of the (receiver) hardware. 
 
In Section 4.12, a match is derived between the spatial correlation model introduced in 
Section 3.6 and measured correlation matrices with respect to the error-rate performance.  
 
When outer coding is used and the MIMO mapping is seen as an inner code, one can 
imagine that exchanging information between the MIMO demapper and the decoder of the 
outer code could potentially improve the performance. This exchange of information is 
commonly organised in a number of iterations and this principle is generally referred to as 
turbo processing. Section 4.13 describes the application of this principle to SDM, named 
Turbo SDM. 
 
Finally, conclusions are drawn in Section 4.14. 
 

4.2 A Unified Framework of MIMO Techniques 
 

4.2.1 General Structure 
 
In this section, an overview of (most of) the existing MIMO techniques is provided and a 
framework is introduced in which a general TX and RX structure is proposed. This 
framework could form the basis of a unified theory on MIMO techniques. 
 
Regarding the TX structure, in general, a TX signal for a MIMO system with Nt transmit 
antennas is generated by performing the following tasks on the incoming bit stream: 
 
- channel encoding, 
- mapping of the encoded bits on the spatial and/or temporal dimensions, 
- mapping the (coded) bits onto a constellation diagram (and, if necessary, weighting of 

the resulting streams). 
 
On the receive side, generally speaking, detection is performed jointly over the spatial and 
temporal dimension. The complexity strongly depends on the TX signal design. When 
nothing is undertaken to reduce the complexity, the number of codewords can grow 
exponentially with the size of the spatial and temporal dimension. Proper design of the TX 
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signal, however, allows for less complex receivers achieving (near) optimal performance. 
Examples of such MIMO schemes are discussed later on in this section. The general 
structure of a MIMO system is given in Figure 4-1. 
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Figure 4-1: General structure of a MIMO system. 

 
Although, in our opinion, the introduced general MIMO scheme can cover (most of) the 
MIMO algorithms reported in literature, generally, a number of distinctions are made to 
classify the different algorithms. The commonly used classifications are: 
 
- Open-loop versus closed-loop techniques. The distinction is made between systems 

that do not rely on knowledge of the channel responses at the transmitter, i.e., open-
loop schemes, and systems that do assume partial or full availability of the channel 
information at the TX through some form of feedback mechanism, i.e., closed-loop 
schemes. In general, the feedback loop is designed to provide information for selection 
of the coding rate, constellation size, type of space-time mapping, and/or TX power per 
antenna (see Figure 4-1). 

 
- Transmit diversity versus spatial multiplexing algorithms. If the wireless 

communication channel is richly scattered, a distinction can be made depending on to 
what extent the algorithms exploit the transmit diversity provided by the channel. On 
the one hand, transmit diversity schemes fully use the spatial dimension for adding 
more redundancy, thus, keeping the data rate equivalent to a single antenna system, 
with the goal to increase robustness. When the redundancy is generated through coding 
over the spatial and temporal dimension, the principle is called Space-Time Coding. On 
the other hand, spatial multiplexing algorithms exploit the spatial dimension by 
transmitting multiple data streams in parallel on different antennas, with the goal to 
achieve high data rates ([35, 36, 132, 144]). These algorithms are referred to as Space 
Division Multiplexing (SDM) algorithms. Note that the distinction is not very strict, 
since hybrid schemes can be envisioned that combine transmit diversity and spatial 
multiplexing and partly benefit from both robustness and data rate enhancement. In 
[73], the possible trade-off between what is called diversity gain and spatial 
multiplexing gain is theoretically analysed, and an example is given in [19]. 
Furthermore, it should be mentioned that a MIMO channel could be ill conditioned in a 
MIMO capacity sense (e.g., see the LOS cases in Chapter 2). These cases call for 
beamforming type of approaches, both at the transmitter and receiver side, aiming at 
maximising the signal-to-noise ratio by forming proper beams. When the antennas are 
only partially correlated, hybrid schemes of transmit diversity/beamforming may be 
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applicable ([44, 87]). So, beamforming can be included in the context of the unified 
framework. 

 
- Joint Coding (JC) versus Per-Antenna Coding (PAC). When the original bit stream is 

first encoded and then demultiplexed into coded substreams of which each is 
modulated and mapped onto the corresponding transmit antenna, it is called Joint 
Coding (or vertical encoding, [146]). With Per-Antenna Coding (or horizontal 
encoding, [146]), the original bit stream is first demultiplexed into a number of 
uncoded bit substreams which are then individually encoded, modulated and mapped 
onto the transmit antennas ([130]). The advantage of the former is that the coding is 
performed over the space and time dimension, which could result in a better 
performance than the latter. The advantage of the latter, however, is that its receiver 
architecture might be less complex, since the encoding over the time and spatial 
dimension are separated. Note that from the description of PAC it seems that the 
general diagram of Figure 4-1 does not cover the latter case and that the order of 
encoding and Space-Time mapping should be changed. When complexity is not taken 
into account, however, it is not difficult to imagine that the encoder internally already 
can perform the demultiplexing and encoding per substream and, to make the picture 
complete, multiplexes the result again, such that the "official" demultiplexing still is 
done by the Space-Time mapper. In this way, the general structure also holds for PAC 
schemes. 

  
These different flavours of transmission approaches result in a multiplicity of candidate 
transmission schemes. Combined with corresponding receiver techniques, these schemes 
offer a variety of trade-offs between capacity performance, frame error-rate performance, 
computational complexity/simplicity and sensitivity to channel and/or interference 
estimation mismatch. An overview of some standard MIMO TX techniques is given in the 
next subsections. 
 

4.2.2 Space-Time Coding (STC) 
 
As explained before, in Space-Time Coding techniques the coding is performed over the 
spatial and temporal dimension. In this way, the spectral efficiency of MIMO is exploited 
by adding extra redundancy to improve the performance/robustness. 
 
The question emerges how to efficiently code over the two dimensions, space and time. As 
an answer to this question, some basic code design criteria were defined in [39] and [116] 
by means of an upperbound analysis on the pairwise error probability. Given two 
codewords C and E, it is found that the following two quantities should be maximised: 
 
- the diversity order, which determines the exponential decay of the error-rate with the 

SNR (on a linear scale). For independent fading per channel element, the diversity 
order is shown to be r⋅Nr, where r equals the minimum rank of the codeword difference 
matrix C – E over all possible codeword pairs. Thus, to maximise the diversity order, r 
must be maximised. Therefore, this criterion is called the rank criterion. 

 
- the coding gain, which defines the SNR gain compared to an uncoded scheme with the 

same diversity order. The coding gain is given by the minimum product of the nonzero 
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eigenvalues of (C – E)(C – E)H over all distinct pairs of codewords. Since the product 
of eigenvalues equals the determinant, this criterion is often called the determinant 
criterion. 

 
These criteria are difficult to relate to traditional code designs ([90]) and, thus, many 
space-time codes are simply handcrafted using computer search methods. More general 
design rules are presented in [45], albeit only for small PSK constellations. 
 
Recently, however, it has been shown that under certain properties the traditional code 
design criterion of maximising the minimum Euclidean distance (||C – E||) between any 
pair of codewords is more appropriate: 
 
- In [18, 63] it is shown analytically that this design rule is applicable when Nr → ∞, or 

when Nt → ∞ and Nr → ∞ and the ratio between Nt and Nr is finite, while computer 
simulations show that this result holds even for a number of antennas as low as 
Nt = Nr = 4. 

 
- In [148] it is shown that this criterion applies when the diversity order r⋅Nr ≥ 4, or, in 

other words, when the product of the number of transmit and receive antennas is 
relatively large.  

 
This can be explained by the fact that, when a reasonably large diversity gain is provided 
by transmit and/or receive diversity, a MIMO fading channel converges to a Gaussian 
channel, provided proper encoding is applied across the diversity dimensions. As a result, 
under above properties standard SISO codes together with some form of spatial 
multiplexing may outperform handcrafted Space-Time Codes. 
 
The rank criterion, the determinant criterion, and, later, the Euclidean distance criterion, 
have stimulated various design activities, which have resulted in a number of different 
space-time codes, namely, Space-Time Block Codes (STBCs), Space-Time Trellis Codes 
(STTCs), Space-Time Turbo Codes and Linear Dispersive Codes. 
 
Space-Time Block Codes 
 
In Space-Time Block Codes, the input signal is assumed to be a stream of modulated 
symbols from a real or complex constellation. The STBC encoder maps these symbols onto 
codewords that span a block in both the spatial and temporal dimension. The encoder 
operates on a block of, say, Y input symbols producing an Nt × Ns codeword C whose rows 
correspond to transmit antennas and columns correspond to symbol time instants ([75]): 
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The rate of STBCs is defined as R = Y/Ns. This definition is chosen such that when Nt and, 
correspondingly, the number of input symbols Y grows, R improves related to the fact that 
number of transmitted symbols per unity of time increases. From an efficiency point of 
view, the codes should be designed such that they achieve a rate as high as possible. On the 
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other hand, redundancy is added to obtain a robust communication link. Both goals cannot 
always be achieved at the same time. For instance, Orthogonal STBCs seek to fully exploit 
the available transmit diversity, however, sometimes at the expense of data rate/coding 
rate. Namely, in [42] it is shown that for linear complex orthogonal designs with more than 
two antennas, the rate cannot be larger than 4/5. "Linear" in this case means that the 
encoder consists of a linear operation by which the input bits are transformed to ST 
codewords. Examples of orthogonal STBCs for more than two TX antennas (achieving 
part of this rate) can be found in [115] and [140]. When non-linear processing is allowed, 
however, rate-1 full diversity schemes can be found for Nt = 3 and Nt = 4 with Quadrature 
Phase Shift Keying (QPSK) modulation, see [72]. For the design of real orthogonal 
STBCs, full diversity rate-1 codes exist for all number of transmit antennas ([32]). 
 
Regarding the efficiency it should be noted that orthogonal STBCs do not always fully 
exploit the available MIMO channel capacity. In [101] it is shown that a space-time block 
code is optimal with respect to capacity when it is rate one and it is used over a channel of 
rank one. In other words, only rate-1 STBCs, used over any channel with one receive 
antenna, are optimal with respect to capacity. 
 
Since the rate of complex orthogonal STBCs with more that two transmit antennas drops 
below one, the result is a capacity penalty. For this reason non-orthogonal STBCs have 
been designed, which are able to achieve rate one, but at the expense of performance. 
Examples can be found in [60, 61, 83, 122]. 
 
When we have a close look at STBC encoders, we can observe that they, in a sense, act 
like space-time mappers or interleavers and thus always require the assistance of a one-
dimensional outer code. 
 
In [50], linear space-time block codes are introduced that are designed to optimise the 
mutual information between transmit and receive signals. These codes are called Linear 
Dispersive Codes. They subsume many STBCs as special cases and, like those, necessitate 
the use of outer one-dimensional coding. Furthermore, like STBCs, they constrain the 
channel capacity to some extent. When Nt ≤ Nr, they revert to Space Division Multiplexing 
(SDM) architectures. Therefore, their domain of interest is scenarios with Nt > Nr. 
 
One of the most popular orthogonal space-time block codes is the Alamouti scheme for two 
transmit antennas ([5]). In this scheme, the data is transmitted as is shown in Figure 4-2. At 
a given symbol period, two symbols s1 and s2 are transmitted simultaneously on TX 1 and 
TX 2, respectively. During the next symbol period, –s2

* and s1
* are transmitted on TX 1 

and TX 2. 
 
Under the assumption that the channel is a flat-fading channel and constant during the two 
symbol periods, using the notation of Subsection 3.5.1, the signal at the q-th RX antenna at 
symbol time 1 and 2, xq(1) and xq(2), respectively, can be expressed as a function of an 
orthogonal code matrix: 
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where nq(t) represents the additive noise at symbol time t and hqp denotes the channel 
between TX p and RX q. Alternatively, the signal at RX q can be given as function of an 
equivalent orthogonal channel matrix: 
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When this equation is left multiplied by the Hermitian transpose of the orthogonal channel, 
scaled estimates of s1 and s2 are retrieved: 
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When the receiver consists of only a single RX antenna, s1,est and s2,est can be obtained 
through straightforward slicing, keeping the proper scaling in mind. Otherwise, the signals 
related to the multiple antennas can be combined using the Maximum Ratio Combining 
(MRC) principle ([90]), after which the estimates of s1 and s2 can be found to be 
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Through this processing, the Alamouti scheme can achieve a diversity order of 2Nr, 
depending on the channel properties. 
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Figure 4-2: The Alamouti STBC scheme. 

 
Recalling that in [101] it is shown that a space-time block code is optimal with respect to 
capacity when it is rate one and it is used over a channel of rank one, it is easy to verify 
that the Alamouti scheme is optimal for the case that Nr = 1. Moreover, in [73] it is proven 
that the 2 × 1 Alamouti scheme is providing an optimal trade-off between diversity gain 
and multiplexing gain. 
 
When we compare the transmitter part of Figure 4-2 with that of Figure 4-1, it becomes 
clear that the Alamouti scheme does not directly fit onto the general block diagram since 
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the Alamouti scheme requires modulated symbols as input to the encoder/space-time 
mapper. It is possible, however, to redesign the encoder such that it also works on bit level. 
As a result, the modulation can be performed after the encoding. Without loss of 
generality, this is shown for QPSK modulation1 in Figure 4-3. Assume that two subsequent 
input bits of the constellation mapping are mapped to QPSK constellation points using the 
mapping of Table 4-1. 
 

Table 4-1: QPSK constellation mapping. 

Input bits, e.g., b0b1: 00 01 10 11 
Output symbol, e.g., s1: ( )j−−1

2
1 ( )j+−1

2
1 ( )j−1

2
1 ( )j+1

2
1  

 
Furthermore, let !b represent the outcome of the binary NOT operation on the 
corresponding bit b. Then, if the encoder is designed such that its output to an input 
sequence b0, b1, b2, b3, …  equals b0, b2, b1, b3, !b2, b0, b3, !b1, … and that the demultiplexer 
alternates these bits among the two TX branches, the input sequence to the first 
constellation mapping block is b0, b1, !b2, b3, … and its corresponding output is s1, –s2

*, … 
Likewise, we can show that the output of the second constellation mapping block is given 
by s2, s1

*, …, which is in agreement with Figure 4-2. 
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Figure 4-3: Alamouti scheme fitted onto the general structure (see Figure 4-1), for 
QPSK modulation. 

 
From (4.5), we observe that the receiver for the Alamouti scheme (and in general for all 
orthogonal designs) can be much simpler than full MLD over the spatial and temporal 
dimension, since first the channel is decoupled into the scalar channel ΣqΣp|hqp|2, before the 
final detection is performed. 
 
Equivalent to the fitting of the Alamouti code to the general structure, other STBCs can be 
matched to it. 
 

                                                 
1 Unless mentioned otherwise, we will use Gray mapping. In Gray mapping, the corresponding binary 
representation of adjacent constellation points only differ in one position. 
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Space-Time Trellis Codes 
 
Space-Time Trellis Codes (STTCs) were first introduced in [116]. These codes combine 
the space-time mapping principle of STBCs with proper channel coding and thus they 
provide significant coding gain, in addition to diversity gain. A disadvantage is that their 
complexity depends on the number of states, which on its turn grows exponentially with 
the number of transmit antennas. Therefore, the many contributions in literature following 
[116] are mostly constrained to two, three or four transmit antennas. 
 
In space-time trellis coding, in general, the incoming bits are first encoded before they are 
mapped into the space-time format, and modulated. This order perfectly matches that of 
the general structure of the transmitter of Figure 4-1. Hence, STTCs fit within the unified 
view on MIMO systems of this section. 
 
As example, we will show the match for the 8-state QPSK code proposed in [116]. The 
trellis diagram together with the outputs of the encoder is given in Figure 4-4a. It is 
assumed that the input to the encoder consists of two bits at a time. The encoder state is 
represented binary by D2D1D0 and the two input bits result in four possible transitions per 
state. The four transitions result in four possible encoder outputs, which are listed per input 
state in Figure 4-4a. The outputs are denoted as a combination of two quaternary numbers 
that represent the QPSK symbols to be transmitted on TX 1 and TX 2, respectively. A 
possible implementation scheme of this code can be found in Figure 4-4b. When 
comparing this figure with Figure 4-1, the match with the general block diagram is 
obvious. The best decoder is the full MLD operating over the spatial and temporal 
dimension, which can be implemented efficiently and without much loss by the Viterbi 
decoder ([116]). Note, however, that its complexity grows exponentially with the number 
of states. 
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Figure 4-4: (a) The trellis of the 8-state QPSK STTC proposed in [116] 

and (b) its mapping to the general block diagram. 
 
Space-Time Turbo Codes 
 
It is possible to replace the encoder of a space-time code by a turbo encoder, to apply the 
turbo principle that generated much attention for the SISO channel ([16, 17]) to the space-
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time domain. The multiple outputs of a turbo code can be launched from multiple TX 
antennas ([28, 124]), or, alternatively, the MIMO mapping itself can be regarded as inner 
code that can be concatenated with an outer channel code ([55, 111]). At the receiver, the 
turbo-decoding principle is applied by performing iterative decoding between the 
concatenated codes. This could be an attractive alternative to the full space-time MLD of 
STTCs, which may achieve almost the same performance at lower complexity, but at the 
expense of latency. 
 
Equivalent to the results for STBCs and STTCs, it is possible to find a mapping of the 
space-time turbo codes onto the general framework. 
 

4.2.3 Space Division Multiplexing (SDM) 
 
Instead of exploiting the spatial dimension by introducing more redundancy in order to 
enhance the robustness like in Space-Time Coding, the multiple antennas can also be used 
to increase the data rate. The latter can be achieved by simultaneously transmitting 
different streams of data on the different transmit antennas (at the same carrier frequency). 
Although these parallel data streams are mixed up in the air, when the MIMO channel is 
well conditioned they can be recovered at the receiver by using spatial sampling (i.e., 
multiple receive antennas) and corresponding signal-processing algorithms. This technique 
is referred to as Space Division Multiplexing (SDM). The main advantage of SDM is that it 
directly exploits the MIMO channel capacity to improve the data rate. The main 
disadvantage is that no redundancy is added and, thus, it might suffer from a poor link 
reliability. To overcome this problem additional channel coding can be introduced. This, 
however, reduces its data rate advantage. 
 
Recall that at the beginning of Subsection 4.2.2 it has been cited that, when the number of 
antennas and diversity potential of the channel are large enough, the probability of error 
appears to depend only on the Euclidean distance of the code. This would indicate that a 
one-dimensional code designed for AWGN channels, of which its codewords are properly 
interleaved across the space and time, may be as effective as a space-time code designed 
according to the rank and determinant criterion. In [148] it is shown that this would already 
be the case when the diversity order is equal to or larger than four, which would restrict the 
domain of interest of space-time coding to architectures with only 2–3 antennas. 
 
Besides the data rate advantage of SDM, also its decoding complexity might not be as 
complex as for space-time codes, especially when the number of transmit antennas is 
relatively large. This can be explained by the fact that, in general, space-time codes require 
joint detection over the spatial and temporal dimension of the signals radiated by the 
various transmit antennas, resulting in a complexity that explodes when the number of TX 
antennas increases. With SDM it is, however, generally possible to separate the spatial and 
temporal processing. This will (most likely) result in a performance degradation. A 
possible way to overcome this, at the expense of latency, is to apply the turbo-decoding 
principle and iterate between the spatial mapping/code (i.e., the inner code) and the 
temporal code (i.e., the outer code), see [53, 106, 123, 138]. 
 
When encoding is applied to SDM, the coding of the input data can be done before or after 
the demultiplexing, which is referred to as Joint Coding and Per-Antenna Coding, 
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respectively (see Subsection 4.2.1). In the concept of PAC, the TX antennas can be either 
co-located or not. Especially the latter option can be seen as multiple access scheme and is 
generally called Space Division Multiple Access (SDMA) ([121]). From a reception point 
of view, the two options are not very different and the detection at the receiver can be 
performed by multi-user detectors operating in the spatial domain. Since for SDMA with 
dislocated single-branch transmitters, however, each transmitter has its own local 
oscillator(s), time and frequency synchronisation in case of SDMA is cumbersome ([121]). 
Therefore, we will focus on SDM. 
 
The concept of PAC (also called layered architecture) was introduced in [35, 84]. One of 
the main contributions of [35] was to recognize that, because each transmit antenna 
encounters a different propagation channel, PAC incurs a capacity penalty. Hence, a 
diagonally layered architecture was proposed (Diagonal Bell-Labs Layered Space-Time 
(D-BLAST)) in which successive symbols of a given encoded data stream are sent on a 
different TX antenna, by cyclically selecting another TX antenna per symbol period (see 
Figure 1-5). In this way, each data stream is exposed to the distinct propagation channels 
within the MIMO channel. In fact, this eliminates the capacity penalty compared to cases 
in which no cycling is used ([8]). 
 
Despite the losslessness of D-BLAST in terms of capacity, the cyclic association between 
the encoded data streams and transmit antennas makes the decoding of D-BLAST 
complicated. When this "diagonal" spatial mapping is dropped, the decoding is 
significantly simplified and can be performed "vertically", i.e., per spatial vector, which, 
however, most likely will result in a capacity penalty. As mentioned before, the receivers 
of this PAC principle adopt the form of multi-user detectors operating in the spatial 
domain. Both linear and non-linear processing is possible. As examples of linear detection, 
the Zero-Forcing (ZF) and Minimum Mean Squared Error (MMSE) algorithms can be 
mentioned ([132]). The V-BLAST scheme proposed in [144] and Maximum Likelihood 
Detection ([132]) are examples of non-linear detectors. 
 
The matching of PAC and joint encoding to the unified structure of Figure 4-1 is already 
performed in Subsection 4.2.1. Based on this unified view, it is interesting to note that: 
 
- Any PAC scheme can be regarded as a space-time code wherein each codeword C is 

made up of Nt independent one-dimensional codewords. 
 
- Conversely, any space-time code can be regarded a PAC scheme wherein the Nt 

transmit antennas radiate portions of a single codeword C. 
 
Furthermore, note that several activities have been undertaken to combine SDM with STC 
([51, 73, 112, 114, 139]). The basic idea behind these hybrid schemes is to form space-time 
codewords C using n one-dimensional codewords, with 1 ≤ n ≤ Nt. This idea may be used 
as a starting point to further work out the presented conceptual unified view. 
 

4.2.4 Discussion 
 
In the previous subsections we have seen that we can map the various MIMO TX 
techniques onto a general TX structure. A logical question is how this reflects onto the 
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receiver. It is commonly known that at the receiver side the best performance can be 
achieved when a full maximum likelihood search is performed over the complete 
dimensions that are spanned by the space-time encoding process. It is obvious that the 
complexity of such a receiver grows exponentially with the size of the spatial and temporal 
dimension. Especially when the space-time codeword sizes result in unmanageable 
complexity, a search for less complex RX architectures is required. Sometimes the TX 
signal structure allows for less complex decoding while still achieving full performance, 
like for some STBCs (see Subsection 4.2.2), but in general less complex RX schemes 
result in a performance loss. The goal is to design a receiver with a manageable complexity 
that performs closely to the maximum likelihood bound. 
 
Following the general TX structure given in Figure 4-1, an RX structure as shown in 
Figure 4-5 can be envisioned. When the encoding is seen as encoding over time, the 
receiver processing is split in spatial and temporal processing. Because the processing over 
the two dimensions is separated, a performance loss is inevitable. But, as we will see in 
Subsection 4.11.2, for certain conditions the loss is manageable. Moreover, the 
performance can be improved by applying the principle of turbo-decoding processing ([16, 
17]). In our case, the turbo-decoding principle can be applied by iterating over the spatial 
and temporal detection/decoding. With this principle, in general, the performance gets very 
close to that of the full maximum likelihood search, at the cost of latency. 
 

 

 

Spatial 
detection, 

demodulation 
and 
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Deinterleaving
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Figure 4-5: General RX architecture. 

 
Besides the above proposed low-complex receiver architecture, a number of other 
observations made in the previous subsections speak in favour of separately treating the 
spatial and temporal processing and justify research to SDM: 
 

- the data rate enhancement of SDM (one of the main goals of this dissertation is 
searching for schemes that enhance the data rate). To achieve a certain robustness, 
some temporal outer code may be required. 

 
- the flexibility of spatial multiplexing with temporal encoding in terms of data rate. 

With the general structure of Figure 4-1 it is easy to adapt the rate of the encoder 
and/or the size of the constellation scheme, resulting in variable performance and 
data rate. 

 
- the Euclidean distance design rule. When the diversity order is large enough, the 

Euclidean distance criterion holds as a design rule and simply demultiplexing a 
code optimised for AWGN channels over the spatial dimension might outperform 
handcrafted STCs (designed following the rank and determinant criterions). In 
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[148] it is shown that this would already be the case when the diversity order is 
equal to or larger than four, which would restrict the domain of interest of space-
time coding to architectures with only 2–3 antennas. Note that the spatial 
processing of such a scheme can be seen as SDM and above RX structure can be 
used for detection. 

 
Overall, we can conclude that, based on the unified view presented in this section, the inner 
processing of most MIMO schemes is equivalent to SDM and the outer processing is some 
form of spatial mapping and temporal encoding as outer processing. As a result, (coded) 
SDM may be also applicable in the context of STC. 
 

4.3 The Single-Carrier MIMO Signal Model 
 
In this section, a baseband equivalent signal model for a Multiple-Input Multiple-Output 
(MIMO) communication system is stated in which the communication channel bandwidth 
is assumed to be so narrow that the channel can be treated as flat with frequency (i.e., flat 
fading). 
 
A communication system comprising Nt transmit (TX) and Nr receive (RX) antennas is 
considered. It is assumed to operate in a flat-fading environment and exploits the spatial 
dimension by the MIMO technology (see Figure 4-6). At discrete times, the transmitter 
sends an Nt-dimensional (complex) signal vector s. Note that the elements of s are sent at 
the same carrier frequency. The receiver records an Nr-dimensional complex vector x. 
Then, recalling from subsection 3.5.1, the following baseband equivalent signal model 
describes the relation between s and x: 
 
 nHsx += , (4.6) 
 
where H is an Nr × Nt complex propagation matrix that is assumed constant for the length 
of a packet transmission (i.e., a quasi-static channel) and assumed known at the receiver 
(e.g., via transmission of training sequences). It is assumed that the statistics of the channel 
transfer matrix H can be described by the fading statistics introduced in Section 3.5, 
namely, Rayleigh fading, Ricean fading or AWGN. Furthermore, it is assumed that the 
elements of H have a variance of one, or, in other words, the average channel gain Pc is 
normalised to one. 
 

TX 1 

TX 2 

TX Nt 

RX 1

RX 2

RX NrHtNs

s2 

s1 

rNx

x2 

x1 

n1

n2

rNn

 
Figure 4-6: The physical model of a MIMO system. 
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The Nr-dimensional vector n represents zero mean (µn = 0), i.i.d. complex Additive White 
Gaussian Noise (AWGN) with a variance σn

2 per element. This means that n follows a 
complex multivariate normal (or Gaussian) distribution (see Appendix A.2) and its 
probability density function (pdf) equals 
 
 ( ) ( ) ( ) ( )( )nn

H
nnp µnQµnQn −−−= −− 11 expdet π . (4.7) 

 
Its covariance matrix equals 
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With the focus on spatial multiplexing in mind, unless mentioned otherwise, the total 
transmit power Pt is assumed to be uniformly distributed among the different transmit 
antennas. More precisely, the vector s is assumed to have zero-mean, uncorrelated 
variables with equal variance, σs

2, and the total transmit power is E[sHs] = Ntσs
2 = Pt. The 

covariance matrix of s equals 
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Furthermore, the vectors s and n are assumed to be independent (E[snH] = 0). With this 
information, the covariance matrix of x for a given H can be found, using the fact that, if 
both s and n are zero mean, x is zero mean as well: 
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Furthermore, the expected Signal-to-Noise Ratio (SNR) over the ensemble of all possible 
realisations for the q-th receive antenna, i.e., the average SNR for the q-th component of x, 
can be found and, with Pc = 1, equals 
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where Es represents the average signal power per receive antenna, N0 denotes the average 
noise power per receive antenna, and (.)qq represents the (q,q)-th element of the 
corresponding matrix. The expected SNR per RX antenna, ρq, is assumed identical for all 
Nr receive antennas and will be written as ρ. 
 
As mentioned above, it is assumed that (an estimate of) the channel transfer matrix H is 
available at the receiver, i.e., the receiver knows the Channel State Information (CSI). A 
common way to obtain the CSI at the receiver is by sending a preamble containing known 
training sequences in front of the payload, i.e., the data packet, and using these sequences 
to estimate the channel coefficients. Since the channel is assumed quasi-static, these 
channel coefficients can be used throughout the payload to retrieve the transmitted data. 
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Besides training sequences the preamble usually also consists of synchronisation symbols. 
Synchronisation is an essential task for any digital communication system and required for 
reliable reception of the transmitted data, but in this chapter, synchronisation is said to be 
perfect, in order to focus on its main topic, that is, performance comparison of MIMO 
algorithms. Furthermore, unless mentioned otherwise, it is assumed that the receiver 
perfectly knows the CSI.  
 

4.4 Capacity 
 

4.4.1 Definition of Capacity 
 
One way to express the gain of a MIMO system over a SISO system is by means of the 
capacity. In general, the capacity is defined by information theory as an upperbound on the 
information rate for error-free communication. The question is what the capacity gain of a 
MIMO system is under certain conditions. The capacity of a MIMO communication link 
depends not only on the fading statistics, as for a SISO link, but also on the spatial 
correlation of the channel. This results in a random capacity whose instant value depends 
on the corresponding instantaneous H matrix. An ensemble of H matrices results for a 
given average SNR per RX antenna in a cumulative distribution function (cdf) of the 
capacity. In general, however, the complementary cdf is used because then, e.g., the 99% 
point denotes that for 99% of the instants of channel use the corresponding capacity can be 
achieved. So, note that when the transmitter does not have channel knowledge, for any 
information or bit rate it chooses there is a nonzero probability that an instantaneous H is 
incapable of supporting it even when ideal channel coding for that chosen rate is 
employed. When the instant capacity is less than the chosen rate, a channel outage is said 
to occur. This leads to an outage probability. For a required outage probability, say 1%, the 
corresponding capacity value corresponds to the 99% point of the complementary cdf of 
the capacity. Furthermore, the ergodic capacity is defined as the average capacity over the 
distribution of H. 
 
In general, the challenge for both SISO and MIMO systems is to design efficient 
coding/decoding algorithms that can approach the information theory bound on bit rate 
(i.e., capacity) as close as possible, preferable with a complexity that makes 
implementation feasible. To quantify this bound, in the next subsections, capacity 
expressions and the corresponding outage performance are introduced. 
 

4.4.2 Physical Interpretation 
 
A nice and intuitive way to visualise the physical interpretation of a given channel transfer 
matrix and its impact on the channel capacity is given in [117] and is based on the Singular 
Value Decomposition (SVD) (Appendix A.1.4) of a given channel matrix H. The SVD of 
H equals 
 
 HUDVH = , (4.12) 
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where U and V are unitary matrices with dimensions Nr × Nr and Nt × Nt, respectively. D is 
an Nr × Nt dimensional diagonal matrix having the singular values of H on its diagonal. 
These singular values are the square roots of the nonzero eigenvalues λk of HHH or HHH 
([113]), with k = 1, …, Nk, where Nk = rank(HHH) ≤ min(Nt,Nr) denotes the rank of the 
matrix HHH. Based on the SVD, we thus can rewrite (4.6) as 
 
 nsUDVx += H . (4.13) 
 
Assume we transmit s' = Vs instead of s, and at the receiver, the received vector x is 
multiplied by UH. Then this results in 
 
 . 'nDsnUVsUDVUxUy +=+== HHHH  (4.14) 
 
Note that a matrix or vector that is multiplied by a unitary matrix results in a matrix or 
vector that is transformed from one set of basis vectors that span a space to another set of 
basis vectors. So, multiplying by a unitary matrix can be seen as a rotation, and therefore, 
the channel capacity does not change by above operations. Based on the same arguments, 
the multiplication of the noise vector n by a unitary matrix does not affect its distribution. 
  
A component-wise notation of (4.14) results in 
 
 kkkk nsy '2

1

+= λ . (4.15) 
 
In this case, the equivalence of the physical model of Figure 4-6 is given in Figure 4-7, 
where it is shown that the equivalence of H consists of Nk parallel spatial subchannels with 
the k-th eigenvalue, λk, as gain for the k-th subchannel ([6]). 
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Figure 4-7: Equivalence of the physical model of a MIMO system. 

 
Since the rank equals the number of nonzero eigenvalues, it represents the number of 
available spatial subchannels. The number of spatial subchannels (or eigenmodes) 
indicates the number of parallel symbol streams that can be transmitted through the MIMO 
channel, using the same frequency bandwidth, and is hence a measure of the capacity of 
the MIMO channel. To find this capacity, denote the average SNR at the k-th RX antenna 
by ρk and the transfer function of the k-th subchannel by hk. Then, by using Shannon's 
capacity formula ([107]), we can find the total capacity per unit of bandwidth to be 
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where σk

2 is the power allocated to the k-th subchannel. Clearly, the capacity depends on 
the power allocation per subchannel as will be explained in more detail in Subsections 
4.4.4 and 4.4.5. Furthermore, when the gains λk would be equal and the power allocation 
uniform, we can observe that the capacity grows linearly with Nk. 
 
With spatial multiplexing, the virtual subchannels of a MIMO channel are exploited by 
sending independent data streams on multiple transmit antennas to improve data rates. The 
spread of the eigenvalues λk, with k = 1, …, Nk, is a measure of the orthogonality of the 
MIMO channel. A large eigenvalue spread means that the channel matrix is highly non-
orthogonal and vice-versa. Symmetric orthogonal channels are desirable since they do not 
have null modes, i.e., eigenvalues equal to zero, and hence do not lose transmitted 
information. Moreover, these channels can be inverted in the receiver without noise 
amplification, leading to a good system performance. 
 
Two concrete measures for the orthogonality of a MIMO channel are the condition number 
and Effective Degrees Of Freedom (EDOF). The condition number of a matrix is defined 
by the ratio of its largest and smallest nonzero eigenvalues ([113]). We will define the 
condition number of a MIMO channel by the condition number of HHH and assume that its 
Nk nonzero eigenvalues are sorted in decreasing order of magnitude, then the condition 
number equals 
 

 ( )
kN

H

λ
λκ 1=HH . (4.17) 

 
A condition number of unity means that the channel matrix H is orthogonal. A large 
condition number, however, implies that the channel is highly non-orthogonal or ill 
conditioned, resulting in a poor channel capacity. 
 
The Effective Degrees Of Freedom (EDOF) represents the number of subchannels actively 
participating in conveying information over a given wireless MIMO link. For a SISO 
channel h, the capacity is given by C = log2(1 + ρ|h|2), and it is obvious that at a high SNR, 
ρ, an a-fold increase in SNR results in a capacity improvement of approximately log2(a) 
bit/s/Hz. For a MIMO system, if the capacity increases by EDOF⋅log2(a) bit/s/Hz for a-fold 
raise of the SNR, then, the EDOF is defined as the number of  parallel SISO channels that 
is required for an equivalent capacity increase. So, when α is the number of factor-2 
increases in SNR, we define the EDOF at a given average SNR per receive antenna ρ as 
the derivative of C versus α at α = 0 ([25]): 
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Note that the EDOF is a real number between one and Nk and that it is determined by the 
spatial correlation of H. Furthermore, for low SNR values, it is SNR dependent and its 
value increases when the SNR is increased. For high SNR, it will saturate. 
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4.4.3 The Capacity Expression 
 
Although the physical interpretation of the previous subsection provides an intuitive 
capacity expression, we are interested in a more general capacity expression based on 
information theory. To obtain the theoretical expression of the information capacity of a 
MIMO system for a given channel matrix H, the mutual information between transmitted 
vector s and received vector x should be determined. This mutual information is given by: 
 
 ( ) ( ) ( ) ( ) ( )nxsxxxs HHHHI −=−=; , (4.19) 
 
where H(y) denotes the entropy of a multivariate distribution y. The capacity equals the 
maximum mutual information. Maximising I(s;x) is equivalent to maximising H(x). In 
[117] it is shown that the entropy is largest when x is complex multivariate normal (or 
Gaussian) distributed. Therefore, we will assume that x follows a complex multivariate 
normal distribution with covariance matrix Qn + HQsHH and mean µx = 0. The pdf of a 
complex multivariate normal distribution z with covariance matrix Qz and mean µz is given 
by (see Appendix A.2): 
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The entropy of this complex multivariate normal distribution is given by: 
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where the fact is used that aHb = tr(baH), where tr(.) stands for the trace of a matrix, i.e., 
the sum of the diagonal elements of a matrix. 
 
Above analysis leads with 

rNnn IQ 2σ= to the following capacity expression: 
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where the last equality follows from the determinant identity det(I + AB) = det(I + BA). 
Furthermore, we used the properties that det(A)–1 = det(A–1) and det(A) det(B) = det(AB) 
([113]). Note that G.J. Foschini arrives at the same result in [36] using a similar analysis. 
Furthermore, note that the capacity strongly depends on the distribution of H. Therefore, 
usually the capacity distribution or the ergodic capacity is given. The ergodic capacity is 
simply the average capacity over the distribution of H. In the next subsections, above result 
is used to determine the capacity of both a closed-loop and open-loop MIMO system. 
 

4.4.4 Closed-loop Capacity 
 
To determine the capacity of a closed-loop scheme in which the receiver feeds back the 
CSI to the transmitter, optimal feedback with zero delay is assumed. When the transmitter 
has perfect knowledge of the channel matrix, the total available power Pt can be optimally 
distributed among the Nt transmit antennas. This solution is usually referred to as water 
filling ([69, 117]). 
 
To obtain the capacity for this case, we must choose a Qs in (4.22) that maximises this 
quantity subject to a total transmit power constraint tr(Qs) ≤ Pt ([117]). Based on the SVD 
of H, we can rewrite (4.22) which leads to the task to find a Qs that maximises 
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According to Hadamard's inequality for an N × N nonnegative definite matrix A ([54]), 
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with equality when A is diagonal. In this equation, aii represents the i-th diagonal element 
of A. So, in order to maximise det(B), it must be diagonal. So, choose Qs = VQVH, where 
Q is a diagonal matrix with elements qkk. Note that the qkk's are the eigenvalues of matrix 
Qs. The optimal diagonal entries can be found via "water filling" to be ([69, 117]) 
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An illustration of the water filling principle is depicted in Figure 4-8. The corresponding 
maximum capacity is given by 
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Figure 4-8: The water filling principle. 

 

4.4.5 Open-loop Capacity 
 
If the CSI is not known at the transmitter, it has been shown in [36, 117] that the optimal 
transmit strategy is to distribute the available power uniformly over the transmit antennas, 
i.e., 
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This leads to the open-loop capacity given by 
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For the open-loop capacity, the following two scenarios can be distinguished: 
 
1. The channel matrix H is orthogonal. It can be shown that orthogonal MIMO channels 

have Nk = min(Nt,Nr) spatial subchannels with equal gain. In other words, the condition 
number of the channel is one. Therefore, a uniform distribution of the total available 
transmit power on all subchannels is the optimal transmit strategy and, hence, the 
closed-loop and open-loop capacity are the same and given by 
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Since the average power of the elements of H is assumed to be one and the channel is 
orthogonal, it can be shown that for this case the nonzero eigenvalues of HHH and 
HHH are all equal to λk = max(Nt,Nr), k = 1, …, Nk. Thus, in this case, the capacity 
grows linearly with the minimum of the transmit and receive antennas, Nk = min(Nt,Nr). 

 
2. When the MIMO channel is not perfectly orthogonal, the closed-loop capacity will be 

higher than the open-loop capacity. The reason is that for non-orthogonal channels, the 
eigenmodes have unequal gains. To achieve the closed-loop capacity, the optimal 
transmitter having perfect CSI will use more power on the stronger subchannel and 
enhance the capacity, whereas the transmitter that applies equal power on all 
subchannels wastes energy in the null modes of the channel and, thus, loses in capacity. 
This is illustrated for different antenna configurations in Figure 4-9. In this figure, the 
average capacity, i.e., ergodic capacity, is determined for 10,000 realisations of H, 
where the elements of H are assumed to be i.i.d. circularly-symmetric complex 
Gaussian distributed (see Subsection 3.5.2). Note that the number of nonzero 
eigenvalues of HHH or HHH for this type of channels equals Nk = min(Nt,Nr). From 
Figure 4-9, we observe that there is a big difference in closed-loop vs. open-loop 
capacity for the 4 × 2 case. Such a difference is not observed for the 2 × 4 case, which 
we did not plot for clarity. This observation is supported by [69] and the references 
therein, where it is noted that for Nr ≥ Nt, the increase in capacity achieved via water 
filling is only of interest when small number of antennas is employed, and when the 
receiver observes a low SNR. Significant gains when applying water filling, however, 
are achieved when Nt > Nr. Also for scenarios when high spatial correlation occurs, the 
water-filling solution might be interesting, as is shown in Figure 4-10 for a 4 × 4 
system and the correlation model of Section 3.6, with r = rTX = rRX, where r = {0, 0.6, 
0.8, 1}. We have to conclude, however, that a closed-loop scheme is only providing 
significant capacity enhancements over an open-loop scheme for scenarios in which 
spatial multiplexing is most likely not performing properly anyway. Since the focus of 
this dissertation is on spatial multiplexing, we will focus on open-loop MIMO 
algorithms. 
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Figure 4-9: Ergodic channel capacity for different MIMO configurations. 
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Figure 4-10: Closed-loop and open-loop capacity versus SNR per RX 

antenna for a 4 × 4 system and different correlation coefficients. 

 

4.4.6 Outage Packet Error Rate Performance 
 
As mentioned already in Subsection 4.4.1, the MIMO channel capacity is typically a 
random variable that is varying according to the fading statistics and spatial fading 
correlation of the channel. If we know the channel at the transmitter and therefore its 
capacity, we can select a signalling rate equal to or less than the channel capacity and 
guarantee error-free transmission as long as we use optimal encoding with a large enough 
block size. If the channel, however, is unknown to the transmitter, there will be a finite 
probability that an instantaneous channel does not support the bit rate it chooses. This leads 
to an outage probability and, therefore, despite optimal coding and block sizes, packet 
errors will occur whenever the bit rate exceeds the actual but unknown channel capacity. In 
other words, for optimal coding and large enough block sizes, the MIMO Packet Error 
Rate (PER) equals the probability that the chosen bit rate is larger than the channel 
capacity (see also [85]). 
 
Consider a 2 × 2 MIMO system as an example. The complementary cdf of the capacity for 
such a system operating in a flat Rayleigh fading channel is shown in Figure 4-11 for ρ = 
15 dB. From this figure, it can be seen that for a bit rate of, e.g., 6 bits/s/Hz, approximately 
90% of the channels supports this bit rate, that is 90% of the packet transmissions could 
ideally be error free. In other words, the outage probability (i.e., lowerbound on the PER) 
equals 0.1. When applying this principle for a fixed bit rate at different SNR values, it is 
possible to obtain a PER versus SNR curve. For a fixed rate of 6 bits/s/Hz, this results in 
the optimal MIMO outage curve of Figure 4-12. Note that this curve implies that the PER 
will always be greater than zero and depends on the average SNR much like the PER in an 
uncoded (or sub-optimal coded) Rayleigh fading channel. Furthermore, if we define the 
diversity order as the number of decades the PER improves when the SNR is increased by 
10 dB, the diversity order of the optimal MIMO PER for this 2 × 2 case can be shown to be 
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4 by looking at the slope of the curve. In general, it can be shown that the diversity order of 
the optimal MIMO PER equals NtNr. This indicates that even at the maximum bit rate, a 
diversity order of NtNr is achievable. 
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Figure 4-11: Complementary probability distribution function of the capacity of a 

2 × 2 MIMO system operating in flat Rayleigh fading at an average SNR per receive 
antenna of 15 dB. 
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Figure 4-12: Outage probability (or optimal PER) versus the average SNR per RX 

antenna for a 2 × 2 MIMO system operating in flat Rayleigh fading and a SISO 
system experiencing AWGN, for a bit rate of 6 bits/s/Hz. 

 
For comparison, also the outage performance curve for a SISO AWGN channel with a bit 
rate of 6 bits/s/Hz is depicted in Figure 4-12. It appears to be a step function at ρ ≈ 18 dB. 
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This can be explained by the fact that the capacity for a SISO AWGN channel equals C = 
log2(1 + ρ). By setting C equal to 6 bits/s/Hz we can find the corresponding SNR. As a 
result, in this case, an error is always made if we attempt to transmit at 6 bits/s/Hz on the 
SISO AWGN channel when ρ < 18 dB and conversely we can transmit error-free if the 
SNR is above 18 dB. 
 

4.5 SNR versus Bit Energy-to-Noise Density Ratio 
 
To make a fair performance comparison of systems with, e.g., different coding schemes or 
modulation schemes in terms of received energy per bit, usually in literature, the error-rate 
performance is given as function of the bit energy-to-noise density ratio Eb/N0. Whereas for 
wireless communication system simulations, in general, the SNR at the receive antenna is 
used as input parameter. Let Es/N0 denote the SNR per sample at the input of the RX 
baseband processing. Then, clearly, there is a relation between Eb/N0 and Es/N0. The 
relation that is used for the MIMO simulations of this chapter is given in this section. 
 
The baseband processing of a MIMO transmission system consists of a number of 
subsequent blocks that have an influence on the relation between Eb/N0 and Es/N0. These 
blocks are (see Figure 4-1): 
 

- the encoder with coding rate R (R < 1), 
- the spatial mapper that maps Nt symbols on Nt transmit antennas, 
- and the modulation block that maps m bits onto a 2m-ary modulation scheme. 

 
Now, assume that the communication between transmitter and receiver is scaled such that 
the variance of the propagation attenuation is σc

2 = 1. When Rb = 1/Tb denotes the bit rate 
and Ts the symbol duration, in general, the relation between Eb/N0 and Es/N0 is given by 
 

 
s

bsb

T
T

N
E

N
E

00

= . (4.31) 

 
Given this equation, the relation between Eb/N0 and Es/N0 can be determined per block 
described above. 
 
For an encoder with coding rate R, it can be shown that Ts = RTb, thus, substituting this into 
(4.31) leads to 
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Sending Nt bits parallel on Nt transmit antennas reflects on the relation between Ts and Tb 
as follows: Ts = NtTb. Therefore the symbol-energy to noise-density ratio per receive 
antenna equals 
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The mapping of m bits on an M-ary modulation scheme, with M = 2m, leads to the relation 
Ts = mTb, so 
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When all the above blocks are combined in a serial way, this leads to the following 
relation: 
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where ηeff denotes the spectral efficiency in bits/s/Hz, i.e., the ratio between the bit rate and 
the system bandwidth B = 1/Ts: 
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In the next sections, first some SDM algorithms are described before simulation results are 
shown for which above relations are applicable. 
 

4.6 Zero Forcing (ZF) 
 

4.6.1 Algorithm Description 
 
The principle of Zero Forcing is already introduced in Chapter 2. Here, the algorithm is 
described in more detail, and its performance and complexity are evaluated in the next 
subsections. Zero Forcing is a linear MIMO technique. In Section 2.2, it is shown already 
that the processing takes place at the receiver where, under the assumption that the channel 
transfer matrix H is invertible, H is inverted and the transmitted MIMO vector s is 
estimated by 
 
 xHs 1

est
−= . (4.37) 

 
This principle is based on a conventional adaptive antenna array (AAA) technique, namely, 
linear combinatorial nulling ([144]). In this technique, each substream in turn is considered 
to be the desired signal, and the remaining data streams are considered as "interferers". 
Nulling of the interferers is performed by linearly weighting the received signals such that 
all interfering terms are cancelled. For Zero Forcing, nulling of the "interferers" can be 
performed by choosing 1 × Nr dimensional weight vectors wi (with  i = 1, 2, …, Nt), 
referred to as nulling vectors ([144]), such that 
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where hp denotes the p-th column of the channel matrix H. Let wi be the i-th row of a 
matrix W, then it follows that 
 
 

tNIWH = , (4.39) 
 
where W is a matrix that represents the linear processing in the receiver. So, by forcing the 
"interferers" to zero, each desired element of s can be estimated. 
 
If H is not square, W equals the pseudo-inverse of H (denoted by H†): 
 
 ( ) HH HHHHW 1† −

== . (4.40) 
 
If the elements of H are assumed to be i.i.d., the pseudo-inverse exists when Nt is less than 
or equal to Nr. For Nt larger than Nr, HHH is singular and its inverse does not exist ([113]). 
When the pseudo-inverse exists, the estimates of s (given by sest) can be found by 
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Denote the i-th component of sest by (sest)i, then, as a final step, (sest)i must be sliced to the 
nearest constellation point. In this way, all Nt elements of s can be decoded at the receiver. 
 
A big disadvantage of Zero Forcing is that it suffers from noise enhancement, especially 
for channels with a high condition number κ(HHH). This can be readily observed from 
(4.41). 
 

4.6.2 Performance Analysis 
 
The ZF algorithm described in the previous subsection can be simulated and its BER and 
PER performance can be obtained (see Section 4.11). To verify the simulations it is useful 
to deduce a theoretical representation of the BER performance of the ZF algorithm. We 
start by recalling the relation between s and x from (4.41): 
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This leads to an estimation error 
 
 ( ) nHHHssε HH 1

est
−

=−= . (4.43) 
 
The covariance matrix of the estimation error equals 
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n

HE σ . (4.44) 
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Since n is multivariate complex Gaussian distributed (see Section 4.3) and ε is a linear 
transformation of n, ε will also follow a multivariate complex normal distribution. For a 
given H, this results in the conditional probability density function 
 
 ( ) ( ) ( ) ( )( )ssQssQHss −−−= −−
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1

est expdet, Hp π . (4.45) 
 
For the ZF solution, it is assumed that the elements of the estimated vector sest are 
independent and, thus, Q is assumed diagonal. As a result, it can be said that, without loss 
of generality, the conditional probability density function of the p-th element of sest equals 
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where ( ) 11 −

= pp
H HHα  and ( ) 1−

pp
H HH  corresponds to the element (p,p) of matrix ( ) 1−HHH . 

 
A commonly used method to find an upperbound on the performance is by means of the 
Pairwise Error Probability (PEP) analysis ([20, 90, 116]). Assume two different space 
vectors of size Nt × 1, si and sk, of which the elements are taken from an M-ary 
constellation. Denote the p-th element of the first and second vector by (si)p and (sk)p, 
respectively, with i, k ∈ {1, …, M}. Then, based on above conditional pdf and exploiting 
the equivalency with BPSK as shown in Figure 4-13 (cf. [90]), the probability that the 
receiver decides erroneously in favour of (sk)p while (si)p (i ≠ k) has been sent is given by 
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In this equation, dik is the Euclidean distance between (si)p and (sk)p, σBPSK is the standard 
deviation of the equivalent complex BPSK noise (see Figure 4-13), and Q is the function 
that defines the area under the tail of the Gaussian pdf and equals 
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Figure 4-13: Pdfs of received symbols. Note the equivalence with BPSK. 



80 Chapter 4  Flat-fading MIMO Techniques 

Using the Chernoff bound Q(x) ≤ exp(–x2/2) yields 
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In [142] it is shown that when H is Rayleigh distributed (see Subsection 3.5.2) α is chi-
square distributed with 2(Nr – Nt + 1) degrees of freedom. As a result, the pdf of α can be 
shown to be 
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Note that usually the chi-square distribution with n degrees of freedom is defined as the 
distribution of the sum of n squared i.i.d. zero mean real Gaussian variables with a 
variance σ2. Here, however, a slightly modified form of this definition is used where the 
underlying n/2 complex Gaussian variables are said to have a variance of σ2 so that the n 
real Gaussian variables from which the complex ones are composed have a variance of 
σ2/2. 
 
The average PEP over all channel realisations is now given by 
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where in the third equality α is redefined as a chi-square distribution α' with 2(Nr – Nt + 1) 
degrees of freedom. The variance of the 2(Nr – Nt + 1) underlying real Gaussian variables 
of this chi-square distribution equals 
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From the signal model of Section 4.3 it can be easily deduced that σ2 = 1 and, thus, this 
finally results in a PEP equal to 
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When we normalise (si)p and (sk)p such that (si)p = σs(s'i)p and (sk)p = σs(s'k)p, respectively, 
we may write 
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Note that the Symbol Error Rate (SER) performance is a (weighted) sum of the PEPs. This, 
e.g., follows from the union bound which defines that the symbol error probability when 
(si)p is sent equals ([92]) 
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Or, when averaging over the M possible TX symbols on the p-th antenna, the SER of this 
TX stream reads 
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On average, the total SER can be shown to be equivalent to this result. Moreover, from this 
bound, an approximation on the bit error probability can be obtained via 
 

 sb m
Pr1Pr ≈ , (4.57) 

 
where m = log2M denotes the amount of bits per constellation point. By filling in (4.54), it 
can be observed that the BER as function of the SNR per RX antenna ρ tends to fall off in 
an exponential way with the exponent Nr – Nt + 1. In other words, the diversity order is 
equal to Nr – Nt + 1, which means that when the SNR is increased by 10 dB the BER drops 
by Nr – Nt + 1 decades. 
 
Based on above results, it is easily verified that the performance of an Nt × Nr system with 
ZF processing equals that of a system with Maximal Ratio Combining (MRC), one TX 
antenna (sending with the same TX power as a TX antenna of the ZF MIMO system) and 
Nr – Nt + 1 RX antennas, as also is observed in [142]. Closed-form solutions of the MRC 
performance can be found in [90]. For instance, for BPSK, when si and sk are two different 
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TX symbols for the single TX antenna, the closed-form solution for the PEP of the MRC 
system averaged over all channel realisations is given by 
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where 
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Discarding the actual transmit power, we can say that BPSK only transmits symbols from 
the set {–1, 1} with an equal probability. Therefore, the total bit error probability can be 
found to be Prb = Pr(s1 → s2)/2 + Pr(s2 → s1)/2 = Pr(s1 → s2). For a large SNR per RX 
antenna ρ, the term (1 + µ)/2 ≈ 1 and the term (1 – µ)/2 ≈ Nt/(4ρ). Furthermore, 
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Therefore, when γc is sufficiently large (greater than 10 dB), the probability of error in 
(4.58) can be approximated by 
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From this equation, we again observe that the error rate decreases with the (Nr – Nt +1)-th 
power of the SNR. 
 
The theoretical result, given in (4.58), will be used in Section 4.11 to verify the simulated 
BER performance of the ZF algorithm. 
 

4.6.3 Complexity 
 
As described in Subsection 4.6.1, the Zero Forcing technique is based on calculation of the 
pseudo-inverse of the channel transfer matrix H. Because it is assumed that the MIMO 
system is operating in a quasi-static environment, i.e., H is constant during a packet 
transmission, the pseudo-inverse of H needs to be calculated only once per packet. The 
pseudo-inverse can be calculated after the channel training in the preamble processing. 
During the payload processing, the pseudo-inverse is used for the estimation of every 
transmitted MIMO vector s of the corresponding packet. 
 
A detailed analysis of the complexity of the ZF algorithm is presented in Appendix C.2. 
From this analysis, it follows that the complexity of the preamble processing equals 4Nt

3 + 
Nt

2(8Nr – 2) – 2NtNr real additions (R_ADDs) and 4Nt
3 + 8Nt

2Nr real multiplications 
(R_MULs). 
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The complexity of ZF in the payload processing can be found in the same appendix and is 
per transmitted vector s equal to 2NtNr + 2Nt(Nr – 1) + Nt⋅log2(M) R_ADDs and 4NtNr 
R_MULs. When Ns vectors are transmitted within a packet, these numbers must be 
multiplied by Ns to obtain the payload complexity of ZF per packet. 
 

4.6.4 Soft-decision Output ZF 
 
When coding is applied, it is commonly known that the performance improves when the 
decoder also has knowledge about the reliability of its input bits next to their sliced values 
(see [40]). The former values are generally referred to as soft-decision values, whereas the 
latter are called hard-decision values. For ZF, the generation of soft-decision output values 
is based on the transformation of the received vector x from the "x-space" into the "s-
space" ([110]) so that the search for the possible transmitted vector can be done directly in 
the "s-space". This transformation is already performed in Subsection 4.6.2 and we start by 
recalling the conditional probability density function of the estimated s vector for a given 
channel H from (4.45): 
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Note that, generally speaking, the covariance matrix Q cannot be assumed diagonal, i.e., 
the estimation errors for different antennas are correlated. 
 
The generation of soft-decision output values for ZF is based on the maximum a posteriori 
probability (MAP) principle. Suppose that, at a given time instant, Nb = Nt⋅m bits are sent 
by a MIMO vector/symbol, where m = log2M denotes the amount of bits used per M-ary 
constellation point. Then, if bk is the k-th bit, k = 1, …, Nb, of the transmitted vector si to 
estimate, the binary symbol-by-symbol MAP decoder at the receiver decides, conditioned 
on the received vector x, that this bit was "1" if 
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and "0" otherwise. This rule can be written in a more compact form by means of the 
definition of the Log-Likelihood Ratio (LLR) as follows 
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or, equivalently, when transferring the problem to the "s-space" 
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where the ensemble si (1 ≤ i ≤ I) denotes all possible transmitted MIMO vectors, thus, 
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 tNMI = . (4.66) 
 
Now, above decision rule can easily be implemented as bk = (sgn(L(bk))+1)/2. When we 
apply Bayes' rule, Pr(A|B) = Pr(B|A)⋅Pr(A)/Pr(B), the LLR becomes 
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Because the vectors si are equally likely to be transmitted, Pr(si) is equal for all vectors si. 
Using the distribution of p(sest|si) that is provided in (4.45), the LLR can be shown to be 
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Note that, up to this point, we did not perform any form of approximation, thus, as far as 
performance is concerned, the achievable result is identical to the exhaustive search 
method MLD (see Subsection 4.10.4), since the transformation of x to the "s-space" is free 
of information loss. 
 
Applying the max-log approximation to the above equation yields 
 

 
( )

( ) ( )( )
( ) ( )( )

( ) ( ) ( ) ( ). minmin

maxexp

maxexp
ln

est
1

est1est
1

est0

est
1

est0

est
1

est1

i
H

ibi
H

ib

i
H

ib

i
H

ib
k

kiki

ki

kibL

ssQssssQss

ssQss

ssQss

ss

s

s

−−−−−=







 −−−







 −−−

≈

−

=

−

=

−

=

−

=

 (4.69) 

 
According to [110], the performance degradation of this approximation is negligible. 
Unfortunately, for above LLR definitions an exhaustive search is required over all I 
transmitted vectors si, and since I grows exponentially with Nt, the complexity also grows 
exponentially with Nt. In order to obtain an algorithm with a complexity that grows linearly 
with the number of TX antennas, the following simplification is made: the elements of the 
estimation error vector ε are assumed to be uncorrelated and, thus, Q is assumed diagonal. 
Then, the LLR becomes equal to 
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where qab denotes element (a,b) of Q, and (sest)p and (si)p correspond to the p-th element of 
sest and si, respectively. Now, when applying the max-log approximation on this result and 
using the fact that one of the terms in the summation is the maximum and equals 
exp(max(…))⋅…⋅exp(max(…)), the soft value of a certain bit bk, which is assumed to be 
mapped on the k'-th element of s, can be shown to be 
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where 
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with the operator a giving the lowest integer value that is larger than or equal to a. From 
(4.44) and (4.71), it can be deduced that for (very) high SNRs, the LLR could become 
(very) large. A practical implementation, however, generally uses a fixed-point approach in 
which the signals are quantised. Suppose that a linear Nq-bit quantiser is used. To make 
sure that the LLRs are within the quantisation range, we propose to scale (4.71). 
 
In order to find the proper scaling factor, we first need to determine the expectation of the 
covariance matrix of the estimation error for a large number of channel realisations. If the 
communication system is assumed to operate in an environment that can be modelled by 
the flat Rayleigh fading model of Subsection 3.5.2, the expectation can be shown to be 
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To analyse the soft value of the k-th bit, some assumptions need to be made. Firstly, it is 
assumed that bk = 1 has been transmitted. Secondly, it is assumed that the correct (si)k'|bk = 
1 is found, such that 
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Finally, it is assumed that (si)k'|bk = 0 is chosen completely wrong, thus, the distance 
between (sest)k' and (si)k'|bk = 0 is assumed to be the maximum Euclidean distance between 
two arbitrary constellation points. For BPSK and QPSK, this distance equals 2. Combining 
these results and using (4.71), the expectation of the soft-value of the k-th bit equals 
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Note that, if it was assumed that bk = 0 was transmitted, the following result would have 
been obtained: 
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With Nq quantisation bits, the quantisation range is given by 
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It is reasonable to assume that when we set the "worst case" average of (4.76) to 80% of 
the upperbound of the quantisation range, it provides a sufficient margin to avoid clipping 
as much as possible. Then, with 4Nr >> σn

2, the quantisation scaling factor Cq can be found 
as follows: 
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Note that, when applying this quantisation constant, the resulting LLRs are independent of 
the SNR, so no estimation of the SNR is required. For the SNR region of interest, applying 
this quantisation constant hardly influences the performance as is shown for SOMLD (see 
Subsection 4.10.4) in Figure 5-16. 
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4.7 Minimum Mean Squared Error (MMSE) Solution 
 

4.7.1 Algorithm Description 
 
Another approach in estimation theory to the problem of estimating a random vector s on 
the basis of observations x is to choose a function f(x) that minimises the Mean Square 
Error (MSE) ([92]): 
 
 ( ) ( )[ ] ( )( ) ( )( )[ ]xfsxfsssss −−=−−= HHE estest

2ε . (4.80) 
 
An exact function f(x) is usually hard to obtain, however, if we restrict this function to be a 
linear function of the observations, an exact solution can be achieved. Using linear 
processing, the estimates of s can be found by 
 
 Wxs =est . (4.81) 
 
Now, to obtain the linear Minimum Mean Squared Error (MMSE) solution, W must be 
chosen such that the Mean Square Error ε2 is minimised: 
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Since aHa = tr(aaH), where tr(⋅) stands for the trace of a matrix, the MSE can be written as 
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where, Qs = E[ssH], Qsx = E[sxH], Qxs = E[xsH] and Qx = E[xxH]. Based on the same 
observations as for the spatial correlation matrices in Section 3.6, we may write Qx 
(because Qx is Hermitian and nonnegative definite) as follows: 
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where Λx is a diagonal matrix with the eigenvalues of Qx on its diagonal and A is said to be 
the "square-root" of Qx. Now, we can rewrite the MMSE problem to a form from which a 
solution for W can be obtained that minimises the Mean Square Error: 
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Since the first and the second term of this result do not depend on W, the result is 
minimised when 
 
 0AQWA =− −1

sx
H  (4.86) 

 
When this is worked out, finally, W is obtained: 
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When we go back to our channel model (x = Hs + n) and assume that Qs = E[ssH] = σs

2I 
and Qn = E[nnH] = σn

2I and that Qx = E[xxH] = HQsHH + Qn is invertible, then, with Qsx = 
E[sxH] =  E[s(sHHH + nH)] = QsHH (s and n are assumed independent), W becomes 
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where α equals σn

2/σs
2. When we have an inverse of a matrix with the form A + BCD, it is 

often useful to see what happens when the Matrix Inversion Lemma is applied (see 
Appendix A.1.8), which is given by 
 
 ( ) ( ) 1111111 −−−−−−− +−=+ DABDACBAABCDA , (4.89) 
 
where, A and C are square invertible matrices. When applying the Matrix Inversion 
Lemma, W can be rewritten as follows: 
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So, summarising, it can be said that in order to minimise the Mean Square Error (over W), 
the processing at the receiver must be equal to 
 
 ( ) HH

Nt
HHHIW 1−

+= α , (4.91) 
 
with α = Nt /ρ. Based on this result, we can say intuitively that the MMSE solution trades 
off signalling separation quality for noise enhancement reduction. Furthermore, from 
above equation, it becomes clear that the ZF solution corresponds to an MMSE solution 
with α = 0. On the other hand, the MMSE solution can be shown to be a ZF solution with 
the substitutions 
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Note that in practice it is hard to measure the SNR, so, sometimes α is set to a fixed value 
that does not depend on the Signal-to-Noise Ratio. 
 

4.7.2 Complexity 
 
The complexity of the MMSE algorithm is almost equal to that of the ZF and is derived in 
Appendix C.3. The complexity of the MMSE processing in the preamble phase is found to 
be 4Nt

3 + Nt
2(8Nr – 2) – 2NtNr + Nt R_ADDs and 4Nt

3 + 8Nt
2Nr R_MULs. 

 
The complexity of the MMSE in the payload processing is 2NtNr + 2Nt(Nr–1) + Nt⋅log2(M) 
R_ADDs and 4NtNr R_MULs for every transmitted vector s to decode. 
 

4.7.3 Soft-decision Output MMSE 
 
Except for the fact that the covariance matrix of the estimation error Q for MMSE is 
somewhat different from that of ZF, the soft-decision values of MMSE are similar and can 
be obtained by substituting the Q of MMSE in the equations of subsection 4.6.4. The 
covariance matrix of the estimation error s – sest for MMSE can be shown to be 
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4.8 ZF with SIC 
 

4.8.1 Algorithm Description 
 
The linear approaches of Section 4.6 and 4.7 are viable, but as will become clear from the 
results in Section 4.11, superior performance is obtained if non-linear techniques are used. 
One can imagine that if somehow first the most reliable element of the transmitted vector s 
could be decoded and used to improve the decoding of the other elements of s, a better 
performance can be achieved. This is called Successive Interference Cancellation (SIC) 
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and it exploits the timing synchronism inherent in the system model (the assumption of co-
located transmitters makes this reasonable). Furthermore, linear nulling (i.e., ZF) or 
MMSE is used to perform the detection. In other words, SIC is based on the subtraction of 
interference of already detected elements of s from the receiver signal vector x. This results 
in a modified receiver vector in which effectively fewer interferers are present. 
 
When SIC is applied, the order in which the components of s are detected is important to 
the overall performance of the system. To determine a good detection order, the covariance 
matrix of the estimation error s – sest is used. Recalling from (4.44), the covariance matrix 
is given by 
 
 ( )( )[ ] ( ) PHHssssQ 212

estest n
H

n
HE σσ ≡=−−=

− , (4.94) 
 
or, using the pseudo-inverse, 
 
 ( )H†† HHP = . (4.95) 
 
Let (sest)p be the p-th entry of sest, then, the "best" estimate is the one for which Ppp (i.e., the 
p-th diagonal element of P) is the smallest, because this is the estimate with the smallest 
error variance. From (4.95) it becomes clear that Ppp is equal to the squared length of row p 
of H†. Hence, finding the minimum squared length row of H† is equivalent. 
 
Summarising, the decoding algorithm consists of three parts: 
 

1. Ordering: determine the TX stream with the lowest error variance. 
2. Interference nulling: estimate the strongest TX signal by nulling out all the weaker 

TX signals. 
3. Interference cancellation: remodulate the data bits, subtract their contribution from 

the received signal vector and return to the ordering step. 
 
Note that this principle is analogous to ZF Decision Feedback Equalisation (DFE) in the 
spatial domain ([38, 145]), where interference nulling corresponds to the feedforward filter 
and interference cancellation corresponds to the feedback filter. This algorithm was first 
introduced to the context of SDM in [144] where the algorithm was called Vertical-
BLAST (V-BLAST). Furthermore, note that the principle is similar to successive 
interference cancellation in Multi-User Detection schemes. 
 
Below, a more detailed description of the three recursive steps above is worked out: 
 

1. Compute H†, find the minimum squared length row of H†, say it is the p-th, and 
permute it to be the last row. Permute the columns of H accordingly. 

 
2. Form the estimate of the corresponding element of s. In case of ZF: 

 
 ( ) xws tN

p =est , (4.96) 
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 where the weight vector tNw  equals row Nt of the permuted H†. Slice (sest)p to the 
nearest constellation point (sest,sliced)p. 

 
3. While Nt – 1 > 0 go back to step 1, but now with: 
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Further simplification is possible when the QR decomposition ([113]) is used. Assume that 
the recursive process is in its (k + 1)-th run, then the dimensions of H are Nr × (Nt – k), 
determined with the original Nt. Based on the QR decomposition, we may write H = 
QQRR, where QQR is a unitary matrix representing the feedforward filtering, and the upper 
triangular structure of R implies that in the (k + 1)-th run 
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where R' (the top Nt – k rows of R) is invertible. Then, based on the original Nt, the weight 
vector in (4.96) becomes 
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where ryy denotes element (y, y) of R and qy the y-th column of QQR. 
 

4.8.2 Complexity 
 
With respect to ZF, the ZF with SIC algorithm introduces extra complexity in the preamble 
phase as well as in the payload phase. The exact complexity analysis is given in Appendix 
C.4. From this analysis it is concluded that the complexity in the preamble-processing 
phase equals Nt(6Nt

3 + 8Nt
2(1 + 2Nr) + 3Nt(1 + 6Nr) + 2Nr – 5)/6 real additions and a 

number of real multiplications equal to Nt
2(Nt + 1)2 + 8NrNt(Nt + 1)(2Nt + 1)/6. The 

complexity in the payload processing is shown to be 2Nt(4Nr – 1) + Nt⋅log2(M) R_ADDs 
and 8NtNr R_MULs per transmitted vector s. Note that an efficient low-complexity 
implementation of the SIC principle can be found in [49]. 
 

4.9 MMSE with SIC 
 

4.9.1 Algorithm Description 
 
In order to perform Successive Interference Cancellation with Minimum Mean Squared 
Error estimation, the SIC algorithm of Subsection 4.8.1 has to be adapted somewhat. 
Again, the covariance matrix of the estimation error s – sest will be used to determine a 
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good ordering for detection. Recalling from subsection 4.7.3, this covariance matrix can be 
shown to be 
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Note that P is somewhat different from the case where ZF is used as estimation technique. 
In order to do SIC based on the MMSE algorithm, the SIC algorithm is adapted resulting in 
 

1. Compute W (P is obtained while determining W). Find the smallest diagonal entry 
of P and suppose this is the p-th entry. Permute the p-th column of H to be the last 
column and permute the rows of W accordingly. 

 
2. Form the estimate of the corresponding element of s. In case of MMSE: 

 
 ( ) xws tN

p =est , (4.101) 
  

 where the weight vector tNw  equals row Nt of the permuted W. Slice (sest)p to the 
nearest constellation point (sest,sliced)p. 

 
3. While Nt – 1 > 0 go back to step 1, but now with: 
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The BER performance of ZF with SIC and MMSE with SIC will be compared in Section 
4.11. 
 

4.9.2 Complexity 
 
The complexity of MMSE with SIC is almost the same as that of Zero Forcing with SIC 
(see Subsection 4.8.2). Compared to ZF with SIC, there is only a slight difference in the 
preamble processing, namely, the addition of αI in the calculation of W. As is explained in 
Appendix C.5, this difference results in a complexity of MMSE with SIC in the preamble 
phase of Nt(3Nt

3 + 4Nt
2(1 + 2Nr) + 3Nt(1 + 3Nr) + Nr – 1)/3 real additions and a number of 

real multiplications equal to Nt
2(Nt + 1)2 + 8NrNt(Nt + 1)(2Nt + 1)/6. The complexity in the 

payload processing does not change compared to ZF with SIC and can be shown to be 
2Nt(4Nr – 1) + Nt⋅log2(M) R_ADDs and 8NtNr R_MULs per transmitted vector s. 
 

4.10 Maximum Likelihood Detection (MLD) 
 

4.10.1 Algorithm Description 
 
Maximum Likelihood Detection (MLD) is a method that performs a maximum likelihood 
search over all possible transmitted vectors s. The most likely transmitted vector is found 
as follows: 
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where a search is performed over all vectors si that are part of the ensemble {s1, …, sI} 
formed by all possible transmitted vectors. Their number equals 
 
 tNMI = , (4.104) 
 
where M denotes the number of constellation points. Note that for MLD it is not required 
that Nt ≤ Nr. 
 
A way to arrive at the most likely transmitted vector is by stating that we want to find the 
vector si from the ensemble {s1, …, sI} for which the probability Pr(s = si|x), or Pr(si|x) in 
short, is maximal. This is called the Maximum A posteriori Probability (MAP). Note that 
according to [90], finding such a vector leads to the minimisation of the probability of 
error. When applying Bayes' rule, Pr(A|B) = Pr(B|A)⋅Pr(A)/Pr(B), the probability Pr(si|x) 
may be expressed as 
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where p(x|si) is the conditional probability density function of the observed vector given 
that si has been sent and Pr(si) is the probability of the i-th vector being transmitted. When 
no a priori knowledge is available on the probability that a certain vector is sent, it is best 
to assume that the I vectors are equally probable to be transmitted, hence Pr(si) = 1/I. When 
this assumption is made, the resulting detection method is not longer the MAP method but 
is generally called Maximum Likelihood Detection ([90]). In this case, using the fact that 
the denominator in (4.105) does not depend on si, the decision rule based on finding the 
signal that maximises Pr(si|x) is equivalent to finding the si that maximises p(x|si). 
 
Based on the signal model of Section 4.3 it can be shown that the conditional probability 
density function p(x|si) is a multivariate complex normal distribution (see Appendix A.2). 
Under the assumption that si is sent, for a specific channel H, the mean of x equals Hsi. 
This leads to the following probability density function: 
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H
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where Q is the covariance matrix and equals 
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The resulting conditional probability density function is 
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Consequently, finding the maximum of the conditional probability Pr(si|x) leads to: 
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which equals (4.103) and because finding the maximum of the conditional probability 
Pr(si|x) leads to the minimisation of the error probability ([90]), MLD is optimal in terms 
of BER performance (under the assumption that no a priori knowledge is available at the 
receiver on the probability that a given vector is transmitted, i.e., Pr(si) = 1/I). A major 
disadvantage of MLD, however, is that its complexity grows exponentially with Nt, 
because the complexity is proportional to I (see Subsection 4.10.3 and Appendix C.6). 
 

4.10.2 Performance Analysis 
 
In order to verify the simulation results of uncoded MLD, again the PEP approach is used 
to obtain an analytical upperbound on the performance. Let si and sk be two possible spatial 
TX vectors with dimensions Nt × 1 and assume that si is transmitted, with i, k ∈ {1, …, I}. 
For a given MIMO channel H, the probability that the MLD receiver decides erroneously 
in favour of sk (k ≠ i) equals (equivalent to Subsection 4.6.2) 
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Define y = H(s'i – s'k), where s'i and s'k are the normalised versions of si and sk, 
respectively, such that s'i = si/σs and s'k = sk/σs. Then, using the Chernoff bound, the 
conditional PEP can be upperbounded by 
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Under the assumption of flat Rayleigh fading, the elements of H are assumed to be i.i.d. 
complex Gaussian distributed. As a result, y is a multivariate complex Gaussian 
distribution (see Appendix A.2). So, averaging over all channel realisations equals 
averaging over all y. This leads to the following PEP 
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where in the last line y is redefined as a multivariate complex Gaussian distribution y' with 
the covariance matrix 
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Since det(B) = 1/det(B–1), now the PEP upperbound can be written as 
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The covariance matrix of y for a given si and sk is defined as 
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Since the matrix (s'i – s'k)(s'i – s'k)H is Hermitian, we already know from Section 3.6 that 
their exists a unitary matrix U and a real diagonal matrix Λ containing the eigenvalues on 
its diagonal such that (s'i – s'k)(s'i – s'k)H = UHΛU. But it is also clear that (s'i – s'k)(s'i – s'k)H 
is rank one and consequently has only one eigenvalue, namely λik = (s'i – s'k)H(s'i – s'k). 
Assume without loss of generality that this eigenvalue is positioned on the p-th diagonal 
entry of Λ. Then we may write 
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where hp

H denotes the Hermitian transpose of the p-th column of H, or, equivalently, the p-
th row of HH. When we assume, according to the flat Rayleigh fading model of Subsection 
3.5.2, that the elements of H are i.i.d. zero mean complex Gaussian distributed with a 
variance of one, it can be shown that 
 
 

rNiky IQ λ= . (4.117) 
 
This finally results in the PEP upperbound 
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Since it is already shown in Subsection 4.6.2 that the BER is proportional to a (weighted) 
sum of PEPs, it can be concluded that MLD achieves a diversity order of Nr (which was 
also shown in [125], but with a much looser upperbound). 
 
Using the union bound (see (4.55)), we can show that the average MIMO vector (or 
symbol) probability equals 
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and, an approximation on the bit error probability can be found with Prb ≈ Prs/(NtM). 
 

4.10.3 Complexity 
 
As can be deduced from Appendix C.6, the complexity of MLD strongly depends on the 
available memory size. To determine the complexity figures, in Appendix C.6 two cases 
are distinguished: a minimum amount of memory and a maximum amount of memory 
available. This led to the following complexity numbers. 
  
For the minimum amount of memory, the complexity during the preamble processing is 
2MNrNt R_ADDs and 4MNrNt R_MULs, and the complexity during the payload phase per 
transmitted vector equals 2NrI R_MULs and 
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In the case enough memory is available (i.e., the "maximum amount of memory" case), the 
complexity figures for the preamble phase are, respectively, 4MNrNt R_MULs and 
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While for the payload processing, the complexity count equals in this case 4NrI – 1 
R_ADDs and 2NrI R_MULs per transmitted vector. 
 
To obtain the complexity for the entire packet, these complexity numbers have to be 
multiplied by the number of spatial vectors within a packet Ns. Note that these complexity 
figures increase linearly with the number of receiving antennas and exponentially with the 
number of transmit antennas. 
 
It is possible to reduce this complexity considerably without too much loss in performance. 
From Appendix C.6, it is clear that one of the significant terms in the complexity 
calculation for MLD is the determination of the norm of x – Hsi (commonly known as the 
squared l2 norm ([54]): ||x – Hsi||2). In order to reduce the complexity, an approximation of 
the l1 norm can be used: 
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where hq stands for the q-th row of H. This approximation consists only of real additions 
(and no multiplications) making the MLD algorithm less complex. The drawback of MLD 
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with the approximated norm is that the BER performance deteriorates by approximately 
0.5 dB (see, e.g., Figure 4-18 and [129]). 
 
The new norm definition does not influence the complexity of the preamble processing. 
The complexity of the payload phase, however, is significantly reduced since the 
calculation of the approximated l1 norm results in a complexity of (2Nr – 1)I real additions 
and no multiplications. As a result, the overall complexity per TX vector for this reduced 
complexity case equals 4NrI – 1 R_ADDs. Clearly, this is a significant reduction in 
complexity compared to the previous numbers, but the complexity still increases 
exponentially with Nt. More ideas for complexity reduction are published, e.g., in [11]. 
 

4.10.4 Soft-decision Output MLD 
 
The generation of soft-decision output values for MLD is based on the maximum a 
posteriori probability (MAP) principle. Again, the Log-Likelihood Ratio is used as an 
indication for the reliability of a bit. Based on the analysis of Subsection 4.6.4 and 
assuming that bk is the k-th bit of the transmitted vector to estimate, the LLR value of the 
estimated bit can be shown to be 
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Because the vectors si are equally likely to be transmitted, Pr(si) is equal for all vectors si. 
From Subsection 4.10.1, we already know that 
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with 
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This leads to the LLR of bk: 
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When applying the max-log approximation this results in 
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From this result, it can be observed that Soft-decision Output MLD (SOMLD) is hardly 
more complex than hard-decision output MLD. Namely, at the same time that the norm of 
x – Hsi is determined, the search for the minima can be performed "on the fly". For 
SOMLD, we need to keep track of 2Ntm minima, e.g., in case of a 2 × 2 system with BPSK 
we need to keep track of the minima b{0,1} = 0 and b{0,1} = 1, and finally calculate the LLR 
according to (4.127). A possible architecture for this example is shown in Figure 4-14. 
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Figure 4-14: A simplified 2 × 2 Soft-decision Output 

Maximum Likelihood Detector for BPSK. 
 

From (4.127), it can furthermore be observed that for (very) high SNRs the LLR can 
become (very) large. Following the analysis of Subsection 4.6.4, it can be shown that, for a 
practical implementation, the same quantisation constant as given by (4.79) can be used to 
limit the soft-decision values of SOMLD. 
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4.11 Performance Comparison 
 

4.11.1 Simulations without Coding 
 
The SDM techniques, which are described in this chapter, are programmed in MATLAB 
and some simulations are performed to obtain BER characteristics. These characteristics 
are used to compare the performance of the different SDM algorithms. In all simulations, it 
is assumed that the channel is perfectly known to the receiver and, unless mentioned 
otherwise, the BER performance is obtained by averaging over 100,000 channel 
realisations and packets with a length of 64 bytes (counted at the input of the TX 
processing). 
 
In Figure 4-15, the BERs for different SDM techniques are depicted against the average 
SNR per receive antenna for a 2 × 2 system that operates in a flat Rayleigh fading 
environment (see Subsection 3.5.2). A BPSK modulation scheme is used and there is no 
coding applied. As a reference, the BER of a 1 × 1 system is included. Note that for all 
SDM algorithms, the 1 × 1 performance is equivalent. Furthermore, the upperbounds of ZF 
and MLD are depicted, which are given by (4.58) and (4.119), respectively. Clearly, the 
closed-form expression for the BER of ZF, (4.58), provides an exact match proving the 
correctness of the simulation, whereas the union bound of MLD is loose. The slopes of 
MLD and its upperbound, however, are equivalent. 
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Figure 4-15: BER versus the average SNR per RX antenna for a 2 × 2 system in flat 

Rayleigh fading, BPSK, no coding, and different SDM algorithms. As a reference, the 
1 × 1 case is provided as well as the ZF and MLD upperbounds. 

 
From Figure 4-15, it can be concluded that MLD has the best performance. An intuitive 
explanation for this is that MLD performs detection and uses a priori knowledge about the 
possible constellation points that are sent, whereas the other techniques just performs 
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estimation. Furthermore, the slope of the MLD curve shows a diversity order of 2, whereas 
the slopes of the other curves tend towards diversity order 1. This conclusion is supported 
by the PEP analysis of Subsections 4.6.2 and 4.10.2, where it is shown that the diversity 
order of ZF is Nr – Nt + 1 = 1 and that of MLD equals Nr. Furthermore, note that the 
performance of the 1 × 1 system is 3 dB better than that of 2 × 2 ZF. This can also be 
concluded from the PEP analysis of ZF. Finally, note that especially the successive 
interference cancellation in combination with MMSE detection significantly outperforms 
regular MMSE. 
 
In Figure 4-16, the results of similar simulations are presented, but now for a system with 2 
TX and 4 RX antennas. In this case, the diversity order of ZF is 3 and that of MLD is 4. 
Clearly, the performance of MMSE with SIC in this case is very close to the performance 
of MLD. 
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Figure 4-16: BER versus the average SNR per RX antenna for a 2 × 4 system in flat 

Rayleigh fading, BPSK, no coding, and different SDM algorithms. As a reference, the 
1 × 1 case is provided as well as the ZF and MLD upperbounds. 

 
In line with the previous simulations, Figure 4-17 shows the results for a 4 × 4 system. 
From these results it can be seen that MMSE with SIC still follows the performance of 
MLD quite well, whereas MLD by far outperforms the other schemes due to its diversity 
order of 4. Furthermore, the 4 × 4 ZF results are 6 dB worse than the performance of the 
SISO case, which again also follows from the PEP analysis of ZF (see (4.54)). 
 
When we, however, would go to a higher constellation order, say 16-QAM, the 
performance of MMSE with SIC is dropped considerable compared to MLD as can be seen 
in Figure 4-18. So, SIC does not work that well for large constellation sizes. This can be 
explained by the fact that higher constellation orders are more vulnerable for noise, 
resulting in more errors in the SIC information and, correspondingly, resulting in a 
performance loss. Moreover, the performance of ZF and MMSE almost coincide. 
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Figure 4-17: BER versus the average SNR per RX antenna for a 4 × 4 system in flat 

Rayleigh fading, BPSK, no coding, and different SDM algorithms. As a reference, the 
1 × 1 case is provided as well as the ZF and MLD upperbounds. 
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Figure 4-18: BER versus the average SNR per RX antenna for a 2 × 2 system in flat 

Rayleigh fading, 16-QAM, no coding, and different SDM algorithms (including a 
comparison between MLD with the l1-norm approximation and MLD based on the l2 

norm). As a reference, the 1 × 1 case is provided. 

 
In Figure 4-19, simulation results are depicted for a 2 × 2 system operating in an 
orthogonal channel that is only influenced by AWGN (see Subsection 3.5.4). By writing 
out the signal model for this type of channels, it can be easily verified that the performance 
of an N × N system operating in an orthogonal AWGN channel equals that of a SISO 
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system under AWGN. Consequently, the curves of Figure 4-19 are equal to those of a 
SISO system presented in [90] and do not depend on the SDM processing that is used. The 
SNR difference between the curves of about 10 dB can be explained as follows. From 
Table 3.1 in [126] we learn that in Eb/N0 the theoretical shift between BPSK and 16-QAM 
is 3.98 dB. Furthermore, based on (4.34), an extra 6 dB shift can be expected in the SNR 
when going from BPSK to 16-QAM modulation. In total, this results in the 10 dB shift 
observed in Figure 4-19. When comparing the performance between BPSK and 16-QAM 
for a flat Rayleigh fading channel, the shift strongly depends on the applied SDM 
technique. The shift for MLD between Figure 4-17 and Figure 4-18 at a BER of 10–3 is 
equal to 22 – 11 = 11 dB. For MMSE with SIC, this is about 29.5 – 12 = 17.5 dB and for 
ZF at a BER of 10–2 it is about 29 – 20 = 9 dB. These differences most likely can be 
explained by the different non-linear effects that occur in the MIMO algorithms when 
operating in flat Rayleigh fading. 
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Figure 4-19: BER versus the average SNR per RX antenna for a 

2 × 2 system in an AWGN channel, BPSK and 16-QAM, no coding. 

 
So far, we have looked to simulations without correlation. The question is what the effect 
of spatial correlation is. To that end, simulations are performed with the correlation 
matrices introduced in (3.68) and (3.69). Assume that the correlation coefficients rTX and 
rRX are equal: r = rTX = rRX. For a 4 × 4 system with a spatial correlation of r = 0.6, the 
BER characteristics are shown in Figure 4-20 for BPSK. Compared to the results of Figure 
4-17, a performance penalty is observed (for MLD, also the curve without correlation is 
depicted in Figure 4-20). The performance penalty strongly depends on the detection 
algorithm. For MLD, we see a degradation of about 2.5 dB, whereas for ZF the 
performance drops by more than 5 dB. Moreover, the performance penalty strongly 
depends on the SNR and on r. To make this clear, in Figure 4-21 the BER versus r is 
shown for the average SNR per RX values 10, 20 and 30 dB, both for ZF and for MLD. 
Note that when the BER is similar, the degradation as function of r for ZF and MLD is 
comparable, which can be concluded from comparing the result of ZF with an average 
SNR per RX of 30 dB with that of MLD with an average SNR per RX of 10 dB. Note that 
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the degradation we talk about here is the BER degradation for a given SNR (i.e., a vertical 
shift of a performance point at a given SNR). Since the MLD curve has a steeper slope due 
to its diversity advantage, the corresponding horizontal shift of MLD is less than that of 
ZF, which is observed in Figure 4-20. 
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Figure 4-20: BER versus the average SNR per RX antenna for a 4 × 4 system in flat 
Rayleigh fading with correlation following (3.68) and (3.69) with r = rTX = rRX = 0.6, 

BPSK, no coding, and different SDM algorithms. As a reference, MLD without 
correlation is provided. 
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Figure 4-21: BER versus the correlation coefficient r = rTX = rRX for a 4 × 4 system in 

flat Rayleigh fading with spatial correlation following (3.68) and (3.69), BPSK, no 
coding, and ZF and MLD for different average SNRs per RX antenna. 



104 Chapter 4  Flat-fading MIMO Techniques 

When the channel conditions change from a rich-scattering environment, modelled by flat 
Rayleigh fading, to a channel with more LOS, the performance also deteriorates. The 
amount of deterioration can be read from Figure 4-22 for a 4 × 4 system with ZF or MLD 
as detection technique. 
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Figure 4-22: BER versus the Ricean factor K for a 4 × 4 system in flat Ricean fading 
without spatial correlation, with BPSK modulation, no coding, and ZF and MLD for 

different average SNRs per RX antenna. 
 

4.11.2 Simulations with Coding 
 
In this subsection, simulation results are shown of MIMO combined with coding. The 
performance evaluations of this subsection all focus on a 2 × Nr MIMO system with coding 
rate r = ½ and QPSK modulation. This results in an overall spectral efficiency of 2 
bits/s/Hz. The codes that are compared are the Alamouti scheme (see Subsection 4.2.2), an 
8-state STTC (see Figure 4-4), and SDM with joint encoding (see Figure 4-23) based on an 
8-state convolutional code with (15, 17) as generator polynomial denoted in octal notation. 
For the coded SDM, the modulation is performed after the spatial mapping, which in this 
case simply is a demultiplexer. 
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Figure 4-23: Joint encoding for SDM. 
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As receiver algorithm for the Alamouti scheme, we used the algorithm described by (4.5). 
For the 8-state STTC, the Viterbi algorithm is used to compute the path with the lowest 
accumulated metric and the branch metric for a given transition, denoted by, say, si(t) is 
given by ||x(t) – Hsi(t)||2 ([116]). For SDM with joint encoding SOMLD is chosen as 
receiving algorithm, since in the previous section it is shown that MLD has the best 
performance. After the spatial processing, the convolutional encoded bits are decoded by a 
Viterbi algorithm that accepts the soft-decision output values of SOMLD. 
 
To obtain the BER and PER performance, the average of the bit and packet errors is taken 
over 100,000 channel realisations, with one 64-byte packet transmission per channel 
realisation. Note that the packetlength is defined as the length of the binary input bit 
sequence. 
 
Figure 4-24 shows the BER and PER results of the 2 × 1 and 2 × 2 simulations. For the 8-
state STTC scheme, only the PER results are shown. For the 2 × 1 scenario, the Alamouti 
scheme and the 8-state STTC perform similarly, whereas SOMLD with an 8-state 
convolutional outer code performs considerably worse. For the 2 × 2 case, however, it can 
be observed that for low SNRs, the PER performance of this coded SDM system is better 
than the Alamouti scheme. Interestingly, this is not the case for the BER performance. 
Apparently, the errors of SOMLD with coding occur more in bursts, resulting in a lower 
PER. 
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Figure 4-24: BER and PER versus the average SNR per RX antenna for a 2 × 1 and 
2 × 2 system in flat Rayleigh fading with an efficiency of 2 bits/s/Hz and as coding 

scheme: Alamouti (A), 8-state STTC (T), and SOMLD with an 8-state convolutional 
outer code (S). Also the 2 × 1 PER lowerbound (i.e., outage) is shown. 

 
In Figure 4-24 also the 2 × 1 outage PER is shown as it is defined in Subsection 4.4.6. This 
curve represents the PER lowerbound for a spectral efficiency of 2 bit/s/Hz. In Section 4.2 
we observed that in the 2 × 1 case, the Alamouti scheme is optimal, in the sense that it is 
capable of attaining the system's Shannon capacity. In a performance sense, however, we 
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see that the performance is still about 4.5 dB worse than the PER lowerbound. This 
performance gap can be explained by the fact that according to Shannon the PER 
lowerbound is only achievable with progressively strong overlay encoding, and infinite 
packet sizes. Since we used a limited packetlength and no outer code on top of the 
Alamouti scheme, the observed performance penalty occurs. 
 
For the 2 × 4 and 2 × 8 case, the simulations results are depicted in Figure 4-25. We clearly 
see that both the 8-state STTC and SOMLD with an 8-state convolutional outer code 
outperform the Alamouti scheme. Furthermore, we see that for the 2 × 8 scenario, for a 
PER higher than 0.005, SOMLD with coding performs better than the 8-state STTC, and 
also for the 2 × 4 case in the region of interest the PERs of both schemes are very close. 
This provides a strong indication that the Euclidean distance criterion (see Subsection 
4.2.2) for higher diversity orders is a better design rule that the rank and determinant 
criteria. Note, by the way, that the curves of the STCs (Alamouti and 8-state STTC) are 
steeper than SOMLD with coding due to their TX diversity advantage. In Figure 4-25 also 
the 2 × 4 outage PER is shown as it is defined in Subsection 4.4.6. Apparently the 2 × 4 
schemes as still more the 4 dB worse than this theoretical PER lowerbound. Maybe 
applying the turbo principle ([138]) might result in a performance closer to this bound (see 
Section 4.13). 
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Figure 4-25: BER and PER versus the average SNR per RX antenna for a 2 × 4 and 
2 × 8 system in flat Rayleigh fading with an efficiency of 2 bits/s/Hz and as coding 

scheme: Alamouti (A), 8-state STTC (T), and SOMLD with an 8-state convolutional 
outer code (S). Also the 2 × 4 PER lowerbound (i.e., outage) is shown. 

 

4.11.3 Complexity Comparison 
 
Based on the complexity figures of the previous sections, it is possible to compare the 
complexity of the described SDM algorithms. In this comparison, we will assume that the 
algorithms will be implemented with 8-bit operations as basis. Based on this assumption 
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we will further assume that the complexity of an 8-bits multiplier is ten times higher than 
that of an 8-bits adder. This is based on the fact that a multiplication by a power of 2 is in 
octal notation equivalent to a shift operation, so multiplying two 8 bits numbers in general 
requires 8 shifts and the summation of the results (i.e., 7 additions). It is reasonable to 
assume that the total complexity of 8 shifts and 7 additions is roughly ten times that of a 
single addition, thus, it is reasonable to assume that the complexity of an 8-bits multiplier 
is ten times higher than that of an 8-bits adder.  
 
Based on above consideration, we can express the complexity as a single number in terms 
of equivalent ADDs1. Furthermore, the complexity is determined for 64 byte packets and it 
is assumed that the symbol time of one MIMO vector is 4 µs. Note that the number of 
MIMO vectors within one packet (Ns) is inversely proportional to the number of TX 
antennas (Nt). Moreover, in the complexity measure, we assume that the complexity of the 
packet detection, time and frequency synchronisation, and channel estimation does not 
depend on the chosen MIMO technique and, therefore, we do not take it into account. 
 
Based on above parameters, the overall complexity, i.e., the sum of the preamble and 
payload processing complexity, of symmetric systems, i.e., Nt = Nr, for BPSK and various 
SDM algorithms is given in Figure 4-26. For MLD, only the complexity of the processing 
with the maximum amount of memory is displayed. Furthermore, L1 and L2 in the legend 
stand for the l1 and l2 norm, respectively. 
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Figure 4-26: Complexity in equivalent additions per second versus Nt = Nr for BPSK, 

a 64 byte packet, and different SDM algorithms. 
 
From Figure 4-26 it can be seen that the complexity of ZF and MMSE is similar, as well as 
that of ZF with SIC and MMSE with SIC. It is obvious that the performance improvement 
of the schemes with SIC is paid by a complexity increase compared to the schemes without 
SIC. Note, however, that this complexity increase is about a factor of two and therefore in 
                                                 
1 Although we know that the amount of equivalent ADDs/s is an uncommon measure, it can be used to 
compare the relative complexity of different MIMO systems.  
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general manageable. Surprisingly, it can be noted that the complexity of MLD, although it 
grows exponentially with Nt, is reasonable for BPSK and a small number of antennas, 
while performance wise MLD is also outperforming the other schemes (see Figure 4-15, 
for instance). For MLD based on the l2 norm, the complexity is less than or equal to that of 
the algorithms with SIC up to Nt = Nr = 4. For the l1 norm approximation, this is even the 
case up to Nt = Nr = 8. For higher constellation sizes, however, the complexity of MLD 
quickly diverges from the complexity of the other techniques (see Figure 4-27). 
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Figure 4-27: Complexity in equivalent additions per second versus Nt = Nr for 

64-QAM, a 64 byte packet, and different SDM algorithms. 
 

4.12 Spatial Correlation 
 
In Section 3.6 we have introduced a compact representation of the spatial fading 
correlation when the capacity is used as performance measure. We also promised in that 
section to show a similar match for the BER performance. Such a link depends on the 
chosen MIMO detection method and since we introduced a number of methods in this 
chapter, we can work out the compact representation of the spatial correlation in terms of 
BER performance in this section. We will assume the correlation models introduced in 
(3.68) and (3.69) as starting point. Moreover, we assume that MLD is chosen as detection 
method. 
 
Since the PEP forms a good basis for the BER we start with that. Recalling the PEP of 
MLD from (4.114), 
 

 ( )
1

2

2

4
detPr

−









+≤→ y

n

s
Nki r

QIss
σ

σ , (4.128) 

 
it can be readily deduced that for a high SNR the PEP can be approximated by 
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Hence, in the asymptotic case the PEP (and thus the BER performance) depends inversely 
on the determinant of Qy. Now the question arises what Qy is in scenarios with spatial 
correlation. To find the answer, we start by rewriting y: 
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Now it can be shown that, averaging over H, the covariance matrix of y equals 
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From this result, we can observe that, in order to have the same PEP for the modelled and 
measured RRX, the determinants of both matrices must be the same. In other words, 
det(RRX,mod) = det(RRX,meas). And by using (3.69) we can deduce an rRX that achieves an 
equivalent MLD performance compared to the performance with the measured spatial 
receiver correlation RRX,meas. 
 
Regarding the spatial correlation at the transmitter, it is obvious that β strongly depends on 
(si – sk). Therefore, to find a link between RTX,mod and RTX,meas, one has to average over all 
possible difference vectors (si – sk), which is equivalent to using the overall error-rate 
performance. This overall error-rate performance can be found by averaging over all PEPs 
by means of, e.g., the union bound. Since the si's are taken from a discrete set that depends 
on the constellation size, the easiest and most effective way to find a link is through 
numerical evaluation. 
 
Since we found a (numerical) mathematical link between the MLD error-rate performance 
for measured and modelled spatial correlation matrices, one example showing the match is 
sufficient. To that end, the same parameters as in Section 3.6 are used, where the match in 
terms of the ergodic capacity is already shown. The measured spatial correlation matrices 
are given by (3.71) and (3.72). Clearly, the matching criterion of the measured and 
modelled spatial correlation at the receiver side for the MLD error-rate performance is 
equivalent to (3.65). So to link (3.69) with (3.72), rRX must be set to 0.6172. Furthermore, 
from numerical evaluation we found that, to link the MLD BER performances, rTX must be 
set to 0.38. Finally, the match is shown graphically in Figure 4-28 in which a perfect match 
of the upperbounds can be observed. The slight mismatch between the simulation curves at 
high SNR can be explained largely by their limited accuracy. The curves are namely 
obtained by averaging over 100,000 channel realisations, with one 64-byte packet 
transmission per channel realisation. Hence, the BER is derived by averaging over 
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51,200,000 bits and since, for a good BER measure, we want to have at least 500 bit errors, 
the accuracy for BERs low than 10-5 is marginal. 
  
Note that in [70] a tighter upperbound is found on MLD with spatial correlation, but from 
this bound the same results can be deduced, namely, that for a performance match the 
spatial correlation at the receiving end should obey det(RRX,meas) = det(RRX,mod) and for the 
transmitter side a numerical evaluation must be performed. 
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Figure 4-28: MLD BER performance and upperbound versus average SNR per RX 

antenna for measured and modelled spatial correlation for a 4 × 4 system. 

 

4.13 Turbo SDM 
 

4.13.1 Introduction 
 
In this section, the concept of turbo processing is introduced to coded SDM in order to 
investigate the potential gains of iterative processing in the context of MIMO. It has been 
shown in [119, 120] that the performance of demapping a multilevel modulated signal 
(e.g., like QPSK or 16-QAM) can be improved by using anti-Gray mapping, and iterative 
demapping and decoding, based on the turbo-decoding principle. In this section, we extend 
the iterative demapping idea from a single-transmit single-receive wireless communication 
system to the MIMO case. Since this idea is based on the turbo-coding principle ([16]), it 
will be called Turbo SDM (also known as Turbo-BLAST, see [138]). 
 
Following [120], the proposed method can be regarded as a serially concatenated iterative 
decoding scheme in which the inner decoder is replaced by an SDM-demapping device 
accepting a priori information. This leads to almost the same system configuration as 
described in [120], except that the "regular" (de)mapper is replaced by an SDM 
(de)mapper as shown in Figure 4-29. 
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Next, the system configuration of Figure 4-29 will be described in more detail. Starting at 
the transmitter, the bits from the binary source are encoded using a convolutional code and 
passed through a pseudo-random interleaver (Π). Then they are mapped onto a MIMO 
vector by the SDM mapper. In this SDM mapper the interleaved coded bits are 
demultiplexed, mapped (either using Gray mapping or anti-Gray mapping) and sent in 
parallel on the Nt TX antennas (see Figure 4-30). This TX vector will be represented by the 
Nt-dimensional complex vector s. 
 

Binary 
source 

Conv. 
code Π 

SDM 
mapper

encoder interleaver

SDM 
demapper + Π 

Π 

interleaver

deinterleaver

–1– 

– 
+ 

MAP 
calc. 

decoder 

hard 
decision 

LD,i,p 

LD,a 

LD,p LD,e LM,a 

LM,p LM,e 

Transmitter

Receiver 

 

Figure 4-29: Turbo SDM system configuration. 
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Figure 4-30: The block diagram of an SDM mapper and demapper. 

 
At the receiver, the Nr RX antennas record an Nr-dimensional complex vector x. In the 
SDM demapper, this vector x is demapped and soft-decision values are determined by a 
log-likelihood ratio calculation for all of the transmitted coded bits. After deinterleaving 
(Π–1) and soft-decision input/soft-decision output decoding with a Maximum A posteriori 
Probability (MAP) decoder ([96]) that contains an implementation of the BCJR algorithm 
([13]), the estimates on the transmitted information bits are available at the output of the 
hard decision block. In the iterative demapping/decoding path, extrinsic information LD,e 
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from the decoder is interleaved and fed back as a priori values LM,a to the soft-input soft-
output SDM demapper. The extrinsic information at the decoder is the difference of the 
soft-input and the soft-output LLRs (see [41]) on the coded bits: LD,e = LD,p – LD,a. The 
demapper utilises the extrinsic information from the decoder and calculates improved a 
posteriori values LM,p, which are passed as LM,e = LM,p – LM,a to the decoder for further, 
iterative decoding steps. LM,e is the difference between a priori and a posteriori LLR 
values at the demapper and consists of channel information and extrinsic information. 
 
In Subsection 4.13.2, an SDM demapper that accepts a priori LLR values and generates a 
posteriori LLR values is derived based on MAP decoding. In Subsection 4.13.3 we 
evaluate this SDM demapper using the Extrinsic Information Transfer (EXIT) chart 
methodology which visualises the relation between mutual information at the input of the 
demapper and the mutual information at its output. Finally, some simulation results are 
presented in Subsection 4.13.4. 
 

4.13.2 MAP SDM demapper 
 
The SDM demapper that is used has a strong resemblance with SOMLD as described in 
Subsection 4.10.4, except for the fact that it accepts soft-decision input values. This 
principle is commonly called Maximum A posteriori Probability (MAP) decoding ([90]). 
Recalling (4.123), the LLR of the k-th bit of a given transmitted vector to estimate, 
conditioned on the corresponding received vector x, equals 
 

 ( ) ( )
( )

( )

( )∑

∑

=

==
=
=

=

0

1ln
0
1

ln

ki

ki

b
i

b
i

k

k
k P

P

bP
bP

bL

s

s

xs

xs

x
x

x . (4.132) 

 
For example, for a 2 × 2 SDM system and QPSK modulation, the LLR of e.g. bit b1 
conditioned on the received vector, is given by 
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Due to the bit interleaver that is placed between the encoder and the SDM mapper, the bits 
that are transmitted can be assumed independent. So, when applying Bayes' rule, the 
previous equation can be expressed as 
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So, by assuming that the a priori soft values, 
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are available as input, an SDM demapper accepting a priori values has been found. To 
remove statistically dependent information for further, iterative decoding steps, the 
additive term La(b1) in  (4.134) is ignored, in order to gain the 'extrinsic' plus channel 
information ([41]) of the demapping device. 
 
More general, for Nb coded bits, with Nb = Nt⋅log2M, the soft value of the k-th bit can be 
obtained as follows: 
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where, 
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where bin(β) is a row vector having the values 0 and 1 according to the binary 
decomposition of β. Finally, following Subsection 4.10.1, for a given channel matrix H, 
the conditional probability density function can be shown to be 
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With covariance matrix Q equal to 
 

 
( )( )[ ]
( )( )[ ] [ ] , 2

rNn
HH

ii

H

EE

E

InnHsxHsx

µxµxQ

σ==−−=

−−=
 (4.139) 

 
this leads to the soft-decision outputs 
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where map(.) denotes the SDM mapping of the corresponding bit vector and results in si|bk 
= 0 or si|bk = 1, corresponding to the value to which bk is set. Furthermore, (bβ)p:q denotes 
the p-th up to and including the q-th element of (bβ). 
 
When applying the max-log approximation, the result equals 
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4.13.3 EXIT Characteristics of SDM Demapper 
 
To evaluate the performance of Turbo SDM we will use the Extrinsic Information Transfer 
(EXIT) chart method as described in [119]. In this method, the idea is to predict the 
iterative decoding behaviour by solely looking at the input/output relations of the 
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demapper and decoder in terms of bitwise mutual information. The bitwise mutual 
information is defined as the mutual information between the coded bits at the transmitter 
and the soft-decision values at some stage in the loop of the iterative demapping at the 
receiver. 
 
The a posteriori bitwise mutual information of the SDM demapper IM,e is a function of the 
a priori bitwise mutual information IM,a and the SNR per RX antenna, ρ, 
 
 ( )ρ,,, aMeM IfI =  (4.142) 
 
Since the coded bits at the transmitter are discrete, while the soft-decision values in the 
iterative demapping are continuous, we have to find the bitwise mutual information 
between a discrete and continuous stochastic variable. The bitwise mutual information 
between a discrete stochastic variable X with N "states" and a continuous stochastic 
variable Y can be found in [90] and is given by 
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With equiprobable binary input symbols B to the SDM mapper, the a priori bitwise mutual 
information between the input of the demapper and the coded bits at the transmitter equals 
([119]) 
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where pM,a(ξ|B = b) is the conditional pdf of the LLRs at the input of the SDM demapper. 
Furthermore, the property pM,a(ξ) = ½⋅(pM,a(ξ|B = 0) + pM,a(ξ|B = 1)) is used, with the 
assumption that the input bits are equiprobable, i.e., Pr(B = b) = ½. For Nb = Nt⋅log2M bits 
per mapped MIMO vector, the a posteriori bitwise mutual information is 
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with 
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The conditional pdf pM,a of LM,a is modelled based on the following. In [119] it is stated 
that the EXIT characteristics prove to be very robust due to the robustness of the entropy 
measure, because when different distributions pM,a were used to calculate the demapper 
EXIT characteristics hardly any changes were noticed in the shape of the characteristics. 
This justifies the idea that the conditioned a priori input LM,a can be modelled as an 
independent Gaussian random variable with a mean of µM,as and a variance of σM,a

2, or, 
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when nM,a is an independent Gaussian random variable with zero mean and variance σM,a
2, 

this yields 
 
 aMaMaM nsL ,,, += µ  (4.147) 
 
where s ∈ {–1, 1} represents the BPSK modulation of the corresponding transmitted coded 
bit. Since LM,a is assumed to be an LLR based on a Gaussian distribution, the following 
must hold: 
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by which it is shown that µM,a must equal σM,a

2/2. With the Gaussian approximation of 
LM,a, IM,a can be determined using (4.144). Let ξ = LM,a, then it can be shown that ([118]) 
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IM,a(σM,a) goes to zero when σM,a goes to zero and IM,a(σM,a) goes to one when σM,a goes to 
infinity. IM,a(σM,a) cannot be expressed in closes-form, but it can be shown to be 
monotonically increasing ([118]) and, thus, it is invertible. Hence, for a given IM,a we can 
find a corresponding σM,a and use this to model the a priori soft-decision inputs for the 
demapper. Now, the conditional pdf pM,e,k of LM,e,k can be obtained through simulations 
based on a large set of channel realisations, noise realisations, and LM,a's. Consequently, 
with (4.145) we can find IM,e as a function of IM,a or σM,a

2. This relation between the 
bitwise mutual information of the input values and that of the output values of the 
demapper results in the EXIT characteristics of the SDM demapper. 
 
Iterative demapping and decoding can be applied to any multilevel/multiphase modulation 
scheme such as M-PAM, M-PSK or M-QAM ([120]). In this section, we will only focus on 
QPSK, either with Gray mapping or anti-Gray mapping. 
 
The EXIT characteristics of the SDM demapper for different mappings, SNRs per RX 
antenna, and antenna configurations for AWGN and flat-fading channels are depicted in 
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Figure 4-31 and Figure 4-32, respectively. Note that for Nt × Nr = 2 × 2 and AWGN, we 
used the channel matrix (see Subsection 3.5.4) 
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Figure 4-31: EXIT characteristics of QPSK SDM demapper operating in AWGN for 

different mappings, SNRs per RX antenna, and antenna configurations (Nt × Nr). 
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Figure 4-32: EXIT characteristics of QPSK SDM demapper in flat Rayleigh fading 
with a different realisation per MIMO vector, for different mappings, SNRs per RX 

antenna, and antenna configurations (Nt × Nr). 
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A number of things can be observed from the demapper transfer characteristics. First, note 
that the characteristics are almost straight lines. Second, keeping the mapping and antenna 
configuration Nt × Nr fixed, different SNR values just shift the curve up and down (note 
that for SNR values of 5 dB and larger, also the slope is affected; see the 5 dB curve in 
Figure 4-31). Third, keeping the SNR fixed, different mappings and/or antenna 
configurations result in lines of different slope. Fourth, for AWGN, for Nt × Nr is 1 × 1 and 
2 × 2, the results are the same, which seems logical when choosing the H of (4.150) and 
dividing the power equally among the two TX antennas in the latter case. Fifth, even for 
Gray mapping, MIMO in the Rayleigh flat-fading case results in a non-horizontal curve, 
which can be explained by the fact that the instantaneous MIMO channels are not 
completely orthogonal but provide some spatial "memory". Finally, the curves in Figure 
4-31 and Figure 4-32 with non-horizontal slopes unveil the big potential performance 
improvements in an iterative demapping and decoding scheme compared to the 
configurations resulting in horizontal transfer characteristics. Namely, for the horizontal 
lines, the a priori information is of no means, whereas for the curves with a slope larger 
than zero, the better the a priori information, the better the resulting a posteriori 
information. The latter property shows that applying turbo processing is beneficial. 
 

4.13.4 Simulation Results 
 
In the first set of simulations, we will use a half rate, memory 4, non-systematic 
convolutional code with generator polynomial (G1, G2) = (23, 35) (octal notation) as outer 
code, to be able to compare our results with those of [120]. Furthermore, like in [120], the 
channel is assumed to change for every successive MIMO vector, i.e., "fast time fading". 
Following the analysis of (4.144)-(4.146), the decoder transfer characteristic on the coded 
bits is defined as ID,e = f(ID,a). To obtain the transfer characteristic of the decoder, it is 
assumed that the pdf of soft-decision inputs, LD,a, can be modelled by a Gaussian 
distribution, like for the SDM demapper (cf. (4.147)). 
 
Since the demapper and decoder are only connected by the interleavers, the extrinsic 
output of the demapper becomes the a priori input of the decoder ID,a = IM,e and vice versa 
IM,a = ID,e. This exchange of extrinsic information can be visualised in a graph called EXIT-
chart. When the pseudo-random interleaver size is set to 1000 coded bits, for Rayleigh flat-
fading, QPSK, anti-Gray mapping, an average SNR per RX antenna of ρ = 3 dB and Nt × 
Nr = 2 × 2, this results in the EXIT-chart shown in Figure 4-33. 
 
The BER contour plots of Figure 4-33 can be obtained using the same approach as [118]. 
Assume that not only the input of the MAP decoder, but also the output of the MAP 
decoder, LD,p can be modelled by a Gaussian distribution with variance σD,p

2 and mean µD,p 
= σD,p

2/2. Furthermore, assume that if there still is an error in the soft-decision outputs of 
the coded bits, there will also be an error in the corresponding information bits, i.e., the 
sliced values of LD,i,p (see Figure 4-29). Then, the bit error probability is approximated by 
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Since LD,p = LD,a + LD,e and assuming independency between the a priori information and 
the extrinsic information, we may write 
 
 2

,
2
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2

, eDaDpD σσσ += . (4.152) 
 
Now, when we fill in a certain Pb and use the inverse of the Q function, we can find the 
corresponding σD,p. With above equation, using the inverse relations of ID,a(σD,a), σD,e is 
obtained for a given Pb and ID,a, and based on the analysis of Subsection 4.13.3, ID,e can be 
found as function of σD,e, ID,e(σD,e). This results in the contour plots of Figure 4-33. 
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Figure 4-33: Simulated EXIT characteristics and real trajectory of iterative decoding 
for QPSK, anti-Gray mapping, SNR per RX antenna of 3dB, rate ½ memory 4 code, 

and Nt × Nr = 2 × 2. 

 
From Figure 4-33 a number of things can be seen. First, following the trajectory for an 
SNR per RX antenna of ρ = 3dB, the Turbo SDM system appears to converge after 4 or 5 
iterations. Second, the Bit Error Rate (BER) floor at this SNR is approximately equal to 
0.001 as can be found at the intersection of curve 'a' and 'b', which can be read off from the 
BER contour plots. Third, when the SNR goes down, curve 'a' is also shifting downwards. 
This narrows the tunnel between curve 'a' and 'b'. At a certain SNR, the tunnel is blocked. 
At this SNR, the turbo cliff starts in the Bit Error Rate (BER) curve. For the example of 
Figure 4-33, this is around 1.5 dB (which can be verified with Figure 4-34). Fourth, the 
real trajectory after 3 iterations ends in a BER of around 0.01, which also can be verified 
with Figure 4-34. Fifth, note that, because of its horizontal EXIT chart, it does not make 
sense to perform any iterations for the 1 × 1 case with Gray mapping. Sixth, the MIMO 
configurations perform better than their SISO counterpart, while achieving a two times 
higher data rate. Seventh, for a high SNR and one or more iterations, the anti-Gray 
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mappings outperform the Gray mappings. Only for zero iterations anti-Gray mapping 
performs worse than Gray mapping which can be explained by the fact that the anti-Gray 
constellation contains less mutual information when no a priori knowledge is available 
(see Figure 4-31 and Figure 4-32). Finally, according to Figure 4-32 the slope of curve 'a' 
changes when changing Nt × Nr. From this observation some design guidelines become 
apparent, e.g., the steeper the slope of the SDM demapper curve, the later the turbo cliff in 
the BER versus SNR chart, but the lower the BER floor. Moreover, in [119] it is shown 
that the EXIT chart of the MAP decoder for convolutional codes with larger memories 
becomes less steep, from which the same reasoning follows. Note that the BER results of 
[120] are shown versus the Eb/N0 of the coded bits. According to (4.34), for QPSK this 
results in a 3 dB shift of the performance. 
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Figure 4-34: BER performance of iterative decoding in a flat Rayleigh fading channel 

with a different realisation per MIMO vector, for QPSK, rate ½ memory 4 code, 
different mappings and antenna configurations. 

 
In the next set of simulations, we will compare the performance of turbo SDM with the 
results of Subsection 4.11.2. For the turbo scheme, the same encoder as for SDM with joint 
encoding is used, namely, a rate ½, memory 3 convolutional encoder with generator 
polynomial (15, 17). Furthermore, the channel is assumed quasi static, i.e., constant 
throughout the duration of a packet, and the packet size is set to 64 bytes. 
 
When random interleaving is applied with an interleaver depth of 64 bytes, the results for a 
2 × 2 and a 2 × 4 system are shown in Figure 4-35 and Figure 4-36, respectively. Clearly, 
turbo decoding with 3 iterations and anti-Gray mapping at the transmitter gives the best 
PER performance. For the 2 × 4 case, it is even only 2.5 dB away from the outage PER. 
Note, however, that its BER performance is not always the best, especially not for the 2 × 2 
case. Again, the most logical explanation is that for anti-Gray mapping the bit errors are 
more bursty, resulting in a higher BER, but lower PER than its counterpart with Gray 
mapping. Furthermore, Gray-mapped Turbo SDM without iterations shows a better 
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performance than SOMLD with the same convolutional outer code. This can be explained 
by the fact that a MAP decoder in general performs better than a Viterbi decoder ([96]). 
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Figure 4-35: BER and PER versus the average SNR per RX antenna for a 2 × 2 

system in quasi-static flat Rayleigh fading with an efficiency of 2 bits/s/Hz and as 
coding scheme: 8-state STTC, SOMLD with an 8-state convolutional outer code, and 

Turbo SDM with different mappings and a different number of iterations. 
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Figure 4-36: BER and PER versus the average SNR per RX antenna for a 2 × 4 

system in flat Rayleigh fading with an efficiency of 2 bits/s/Hz and as coding scheme: 
8-state STTC, SOMLD with an 8-state convolutional outer code, and Turbo SDM 

with different mappings and a different number of iterations. 
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4.14 Conclusions 
 
In this chapter, we introduced a unified view on MIMO techniques like space-time block 
coding, space-time trellis coding, and Space Division Multiplexing (SDM). The general 
transmitter consists of an encoder, a space-time mapper, and per transmit antenna a 
modulation block. When the space-time mapper is simply a demultiplexer, we get the 
powerful concept of SDM with outer coding. In literature it was namely shown that, when 
the number of antennas and diversity potential of the channel are large enough, the 
probability of error appears to depend only on the Euclidean distance of the code. This 
would indicate that a one-dimensional code designed for AWGN channels, of which its 
codewords are properly interleaved across the space and time, may be as effective as a 
space-time code that follows the rank and determinant criteria introduced in [116]. In [148] 
it was shown that this would already be the case when the diversity order is equal to or 
larger than four, which would restrict the domain of interest of space-time coding to 
architectures with only 2–3 antennas. In Subsection 4.11.2, we also showed that SDM with 
a certain outer code outperforms Space-Time Coding (STC) with comparable coding 
strength, for a high enough diversity. The performance can be improved even further by 
iterating over the spatial processing and outer code of coded SDM, i.e., by Turbo SDM 
(see Section 4.13), at the cost of latency. 
 
Moreover, the concept of SDM with outer coding is more flexible than STC, since a 
transmit antenna can easily be added or dropped, and puncturing can be applied easily. 
These are good properties for defining sub-schemes that are able to fallback in rate or 
enhance robustness. These definitions are generally captured in modes referred to as 
fallback modes. For STC, however, a different encoder and decoder have to be 
implemented for every rate. 
 
More concretely, the following SDM algorithms were described in this chapter: Zero 
Forcing (ZF), Minimum Mean Squared Error (MMSE), ZF with Successive Interference 
Cancellation (SIC), MMSE with SIC, and Maximum Likelihood Detection (MLD). Their 
performance and complexity were compared and it turned out that MLD is the best 
performing algorithm. Its complexity, however, grows exponentially with the number of 
transmit antennas (Nt). The complexity of the least complex scheme, ZF, grows polynomial 
with Nt. For ZF, the required processing during the payload is the highest and proportional 
to Nt

3. It should be noted, though, that (hardly) no attempt is made to optimise the 
algorithms (for special hardware architectures), so, the results of the complexity 
comparison presented in this chapter are not binding. What we already can conclude from 
the presented results, however, is that the implementation of MIMO schemes (with a low 
number of antennas) is feasible.  
 
All above points provide a strong indication of the potential of SDM with outer coding 
and, therefore, we will apply this concept in the next chapter to OFDM. 
 



 

5  
 

MIMO OFDM 

5.1 Introduction 
 
In general, the MIMO techniques described in the previous chapter provide an interesting 
basis for next generations of wireless communication systems. One of the potential 
application areas is that of Wireless Local Area Networks (WLANs). The current WLAN 
standards IEEE 802.11a ([57]) and IEEE 802.11g ([56]) are based on Orthogonal 
Frequency Division Multiplexing (OFDM) ([127]). A high-data-rate extension of these 
standards could be based on SDM ([137]). This leads to the promising combination of the 
data rate enhancement of SDM with the relatively high spectral efficiency and the 
robustness against frequency-selective fading and narrowband interference of OFDM. An 
advantage of wireless LAN systems is that they are mainly deployed in indoor 
environments. These environments are typically characterised by richly scattered 
multipath. As explained in [36], this is a good condition for having a high MIMO capacity. 
 
In this chapter, first the principle of OFDM is explained (Section 5.2). Then, the 
combination of MIMO and OFDM is described in Section 5.3. Section 5.4 introduces a 
signal model for MIMO OFDM which shows that the MIMO OFDM processing transfers 
the wideband frequency-selective MIMO channel into a number of parallel flat-fading 
MIMO subchannels. In the next section the frequency-selective MIMO capacity is 
determined and the corresponding outage PER is defined. 
 
In Section 5.6, a theoretical Space-Frequency analysis is performed based on the Pairwise 
Error Probability (PEP) to better understand the achievable performance and required 
design rules. Then, Section 5.7 introduces practical coding schemes in which the SDM 
algorithms of the previous chapter can be combined with OFDM. Two basic transmitter 
architectures are described, namely Joint Coding (JC) and Per-Antenna-Coding (PAC). 
These schemes are programmed in MATLAB and simulation results for different SDM 
algorithms, different antenna configurations, and a number of rms delay spreads are shown 
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in Section 5.8. Based on the analyses and simulation results of this chapter, Section 5.9 
presents conclusions and recommendations. 
 

5.2 Orthogonal Frequency Division Multiplexing (OFDM) 
 

5.2.1 Background 
 
In classical data systems in which more data rate was sought by exploiting the frequency 
domain, parallel transmissions were achieved by dividing the total signal frequency band 
into Nc non-overlapping frequency subchannels. This technique is referred to as Frequency 
Division Multiplexing (FDM). In this technique, each subchannel or subcarrier is 
modulated with a separate symbol and then the Nc subchannels are frequency multiplexed. 
Spectral overlap is avoided by putting enough guard space between adjacent subchannels. 
In this way, Inter Carrier Interference (ICI) is eliminated. This method, however, leads to a 
very inefficient use of the available spectrum. A more efficient use of bandwidth can be 
obtained with parallel transmissions if the spectra of the individual subchannels are 
permitted to partly overlap. This requires that specific orthogonality constraints are 
imposed to facilitate separation of the subchannels at the receiver. 
 
Figure 5-1 shows the general structure of a multi-carrier system ([109]). The data stream 
s(i) is converted to parallel data streams, which are modulated onto separate subchannels. 
The resulting signals are summed and transmitted. At the receiver, the different 
subchannels are down converted to parallel baseband signals, demodulated, and then 
concatenated to a serial data stream. 
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Figure 5-1: Basic structure of a multi-carrier system. 

 
Orthogonal Frequency Division Multiplexing (OFDM) is an example of a multi-carrier 
technique that operates with specific orthogonality constraints between the subcarriers. 
Due to these constraints, it achieves a very high spectral efficiency. For adequate 
transmission quality, however, it is important to preserve the subcarrier orthogonality that 
is inherent to the OFDM concept. Although the OFDM principle has been around for many 
years [141], only the current technology level makes satisfactory implementation feasible. 
As a result, more and more systems that operate in the Gigahertz bands are based on 
OFDM, such as wireless LANs ([30] and [57]), Digital Video Broadcasting (DVB) ([29]), 
and Digital Audio Broadcasting (DAB) ([26]). In the next subsection the basics of OFDM 
are explained. 
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5.2.2 Principle 
 
In OFDM, the subcarrier pulse used for transmission is chosen to be rectangular. This has 
the advantage that the task of pulse forming and modulation can be performed by a simple 
Inverse Discrete Fourier Transform (IDFT) which results in a remarkable reduction in 
equipment complexity (filters, modulators, etc.), as is explained in [23] and [141]. Note 
that when the number of subcarriers is a power of two, the (Inverse) Discrete Fourier 
Transform ((I)DFT) can be implemented very efficiently by means of the (Inverse) Fast 
Fourier Transform ((I)FFT). A schematic representation of the equivalent complex-valued 
baseband core of an OFDM system is depicted in Figure 5-2. Most of the symbols in this 
figure have already been introduced in Subsection 3.2.2. The others are explained in this 
subsection. The purpose of the Cyclic Prefix (CP) is explained in Subsection 5.2.3. 
 
Let s(i) be a sequence of discrete-time, QAM-modulated symbols. Furthermore, consider 
an OFDM system that utilizes Nc subcarriers. In communications, in general, these Nc 
subcarriers are distributed equally around the 0th subcarrier. When only Nu out of the Nc 
subcarriers are used, commonly the OFDM symbol is padded with zeros in such a way that 
the zeros result in extra guard space between adjacent OFDM bands. Furthermore, to avoid 
the influence of DC offset on the DC subcarrier (i.e., the 0th subcarrier), it is often set to 
zero. Note that sampling in the time domain results in periodicity in the frequency domain. 
Hence, the negative subcarriers might as well be seen as positive subcarriers by increasing 
their index with Nc. In this case, the Nc × 1 OFDM symbol, s', has the following form 
(when omitting the OFDM symbol index) 
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where x denotes the nearest integer value that is equal to or higher than x. When Nu out 
of Nc subcarriers are used, the IDFT output is given by 
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where s'(i) denotes the i-th element of s'. Note that the uncommon scaling factor 1/√Nu is 
chosen such that the average power of the z(n)'s equals that of the s(i)'s, i.e., σz
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where the assumption is made that the elements of s' are independent. 
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Figure 5-2: Schematic representation of an equivalent baseband OFDM system. 

 
To show the orthogonality principle of OFDM, we next examine the frequency spectrum of 
a continuous-time equivalent of z(n). Based on the fact that sampling in the time domain 
results in periodicity in the frequency domain, it is convenient to write the continuous-time 
equivalent of z(n) for the signalling interval 0 ≤ t < NcTs as 
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fi = i∆f denotes the frequency of the i-th subcarrier, ∆f = 1/(NcTs) = fs/Nc is the subcarrier 
spacing, Ts is the sampling time, fs = 1/Ts is the sampling rate, and x mod N denotes the 
modulo reduction of x by N. Note the equivalence of z(t) with the general multi-carrier 
signals that can be deduced from Figure 5-1. The frequency spectrum of z(t) is obtained by 
performing the Fourier transformation on z(t): 
 

 

( ) ( ) ( ) ( )

( ) ( )( )
 

 

( ) ( ) ( )( )
 

 
. sincmod'

2expmod'1

2exp}{

1

0

1

2
1

2
1

2
1

2
1

∑

∫ ∑

∫

−

−=

−−

−

−=

∞

∞−

−=

−−=

−==

c

c

sci

sc c

c

N

Ni

sci
TNffj

cz

TN N

Ni

ic
u

F

TNffeNisC

dttffjNis
N

dttfjtztzFfz

π

π

π

π

 (5.6) 

 
In this result, Cz is some power related constant. Clearly, the act of truncating the 
continuous-time signal to the interval [0, NcTs〉 in the time domain imposes a sinc(x) 
function on each subchannel in the frequency domain with zeros at multiples of 1/(NcTs), 
which leads to the orthogonality principle of OFDM. As example, suppose the number of 
subcarriers is 16 (Nc = 16) of which only 10 subcarriers are used (Nu = 10) and suppose 
that for a given OFDM symbol all used subcarriers are modulated by the same QAM 
symbol, then the normalised squared absolute frequency responses of the individual 
subcarriers of this OFDM symbol are given by the dashed lines of Figure 5-3. The total 
squared absolute frequency response is proportional to the solid line in Figure 5-3. 
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At the receiver, the transmitted signals are recovered using the Discrete Fourier Transform. 
Based on the resulting signals, it can be observed that the orthogonality principle leads to a 
number of disadvantages of OFDM. OFDM is, e.g., vulnerable for carrier frequency offset 
and phase noise. When the local oscillators at the transmitter and receiver are not aligned, a 
frequency offset occurs and as a result, the frequency spectrum is not "sampled" at the 
peaks of the sinc-functions, but to the left or right of the peaks. At these points, the other 
subcarriers are not zero, and Inter-Carrier Interference (ICI) takes place. Likewise, the 
OFDM signal is vulnerable for non-linearities, like non-linear amplifiers, IQ imbalance, 
DC offset, etc. Moreover, due to multipath distortion, recovering the transmitted signals 
brings some extra problems along as will be explained in the next subsection. 
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Figure 5-3: Normalised squared absolute version of the frequency response of an 

OFDM symbol with Nc = 16 and Nu = 10. 
 

5.2.3 Multipath Distortion 
 
The reason that the information transmitted on the subcarriers can be separated at the 
receiver is the orthogonality relation giving OFDM its name. By using an IDFT for 
modulation, the spacing of the subcarriers is implicitly chosen in such a way that, at the 
frequencies where the received signals are evaluated (at the peaks of the sinc-functions in 
Figure 5-3), all other signals are zero. In order for this orthogonality to be preserved, the 
following must be true ([109]): 
 

1. The receiver and the transmitter must be accurately synchronised. This means they 
both must have exactly the same modulation frequency and the same time-scale for 
transmission. 

2. The analogue components, part of transmitter and receiver, must be of very high 
quality. 

3. There should be no multipath channel. 
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Unfortunately, multipath distortion is (almost) unavoidable in radio communication 
systems and, thus, the received signal is affected. It is shown in [141] that, although the 
truncated subchannel sinusoids are delayed by different amounts (i.e. channel delays), the 
distortion is mainly concentrated at the on-off transmissions of these waveforms. Hence, a 
guard space (in frequency), and a guard time by means of a Cyclic Prefix (CP) or cyclic 
extension (see Figure 5-5), chosen longer than the maximal delay spread, will eliminate 
most interference among channels (i.e., Inter Carrier Interference (ICI)) and between 
adjacent transmission blocks (i.e., Inter Symbol Interference (ISI)). The CP, in general, is 
chosen equal to the last part of the OFDM symbol and, therefore, often is referred to as 
cyclic extension. 
 
To avoid out of band radiation, the on-off transitions must be smoothened. This can be 
implemented by, e.g., windowing each OFDM symbol by a raised cosine window ([126]). 
Figure 5-4 depicts schematically the implementation of the windowing in an OFDM 
symbol. 
 

 

Time 

Ttot = TG + TFFT

 
Figure 5-4: The principle of windowing. 

 
The validity of windowing each OFDM symbol by a raised cosine window can be 
explained by looking to the shapes of the subcarrier sinusoids after the multipath-fading 
channel. An OFDM receiver uses only a part of this signal to calculate the FFT. This part 
should be chosen such that in this FFT interval with a length of TFFT seconds, which at the 
Nyquist rate equals NcTs seconds, every subcarrier has an integer number of cycles, which 
ensures orthogonality. In the multipath-fading channel, the receiver-input signal will be a 
sum of delayed and scaled replicas of the transmitted subcarriers ([127], Figure 5-5). Note 
that a sum of scaled and delayed sinusoids is again a sinusoid. So, as long as the Guard 
Interval (GI) time TG minus half the windowing ramp-up and role-off time is larger than 
the maximal channel delay we can choose the window for applying the FFT such that there 
will still be an integer number of cycles within this FFT interval for each multipath 
component keeping the reflections of previous symbols out and preserving the 
orthogonality. 
 
So, thanks to the guard interval and windowing, the wideband multipath fading is 
experienced in OFDM as a set of narrowband fading subcarriers without ICI and ISI. The 
only remaining effect of multipath is a random phase and amplitude per subcarrier. This 
effect can be minimised by correcting the subcarriers of the received signal with reference 
amplitudes and phases, i.e., channel estimates, per subcarrier, which can be obtained 
during a training phase. The subcarriers in deep fades still are a problem but in order to 
deal with these weak subcarriers that have a large probability to be detected erroneously, 
forward error correction across the subcarriers can be applied. 
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5.2.4 Main Advantages of OFDM 
 
One significant advantage to use OFDM is its low complexity compared to an equivalent 
single carrier system designed to work with the same amount of delay spread. This is due 
to the fact that single-carrier systems need complex equalizers, whereas OFDM allows for 
efficient (I)FFT processing. In, e.g., [126], it is shown that the complexity of a 64-point 
FFT compared to single-carrier equalisation of a channel with an rms delay spread of 250 
ns is 10 times less. 
 
The other advantage of OFDM over single-carrier systems with equalizers is that for the 
latter systems, the performance degrades abruptly if the delay spread exceeds the value for 
which the equalizers are designed. Because of error propagation, the raw bit error 
probability increases so quickly that introducing lower rate coding or a lower constellation 
size does not significantly improve the delay-spread robustness. For OFDM, however, such 
non-linear effects as error propagation do not occur, and coding and lower constellation 
sizes can be employed to provide fall-back rates that are significantly more robust against 
delay spread. This is an important consideration, as it enhances the coverage area and 
avoids the situation that users in bad spots cannot get any connection at all. 
 

Optimum FFT window

GI Data

GI Data GI DataDirect path 
signal

Multi path 
delayed signals

f 1

f 2

f 3

f 4

Subcarrier

cyclic extension

 
Figure 5-5: OFDM symbol with cyclic prefix. 

 

5.2.5 OFDM Transceiver 
 
A general block diagram of the common baseband processing of an OFDM transceiver is 
shown in Figure 5-6 ([127]). On the binary input data, the transmitter performs encoding, 
interleaving, QAM mapping, Nc-point IFFT, and adds a cyclic extension before the final 
TX signal is windowed, transferred to the analogue domain by the Digital-to-Analogue 
Converter (DAC) and converted up to the Radio Frequency (RF) and transmitted. Note 
that, in order to get an output spectrum with a relative low out-of-band radiation, the size 
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of the IFFT can be chosen larger than the number of subcarriers that is actually used for 
transmission. In addition, windowing provides (in general) an extra fall-off of the output 
spectrum. 
 
For reliable detection, it is, in general, necessary that the receiver knows the wireless 
communication channel and keeps track of phase and amplitude drifts. To enable 
estimation of the wireless communication channel, the transmitter occasionally sends 
known training symbols. In Wireless Local Area Networks (WLANs) a preamble, which 
includes channel training sequences, is added to every packet. Moreover, to track the phase 
drift, pilot symbols are inserted to every OFDM data symbol on predefined subcarriers. 
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Figure 5-6: Block diagram of an OFDM transceiver. 

 
The OFDM receiver, basically, performs the reverse operation of the transmitter, together 
with additional training tasks. The received RF signal is converted down to baseband and 
subsequently converted from the analogue to the digital domain by the Analogue-to-Digital 
Converter (ADC). Then, the receiver must estimate and correct for the frequency offset 
and the symbol timing, e.g., by using the training sequence in the preamble. Next, the CP is 
removed and the Nc-point FFT is performed. The resulting signal is corrected for the 
channel influences, and finally demapping, deinterleaving and decoding are performed to 
obtain the binary output data. 
 

5.3 MIMO OFDM  
 
The MIMO algorithms as described in Chapter 4 are narrowband algorithms. In order to 
deal with the frequency-selective nature of wideband wireless channels, MIMO can be 
combined with OFDM. Effectively, OFDM transforms a frequency-selective channel into 
parallel flat-fading subchannels, i.e., the signals on the subcarriers undergo narrowband 
fading. Hence, by performing MIMO transmission and detection per subcarrier, MIMO 
algorithms can be applied in broadband communication ([2, 93, 137]). 
 
Consider a MIMO OFDM system with Nt transmit (TX) and Nr receive (RX) antennas. In 
addition to the spatial and temporal dimension of MIMO, OFDM adds one extra dimension 
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to exploit, namely, the frequency dimension. In line with the unified view on MIMO (see 
Section 4.2), a MIMO OFDM transmitter can be envisioned as presented in Figure 5-7. In 
general, the incoming bit stream is first encoded by a one-dimensional encoder after which 
the encoded bits are mapped onto the three available dimensions by the Space-Time-
Frequency (STF) mapper. After the STF mapper, each TX branch consists of almost an 
entire OFDM transmitter (see Subsection 5.2.5). Note that the symbols of Figure 5-7 are 
explained in Section 5.4. 
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Figure 5-7: Schematic representation of a MIMO OFDM transmitter. 

 
A schematic representation of a MIMO OFDM receiver is given in Figure 5-8. After a 
digital representation of the Nr received signals is obtained by the ADCs, the receiver first 
must estimate and correct for the frequency offset and retrieve the symbol timing, e.g., by 
making use of training sequences. Note that it is convenient for the remaining processing 
to have all receiver branches jointly synchronised and, therefore, the synchronisation task 
should not be performed in parallel per branch, but jointly. Furthermore, for proper 
frequency synchronisation of the multiple branches it is beneficial to have all branches at 
one end of the communication link connected to the same local oscillator in a homodyne 
structure, or to the same local oscillators providing the multiple frequency levels in a 
heterodyne structure. This speaks in favour of Space Division Multiplexing (SDM) as 
opposed to Space Division Multiple Access (SDMA), since for SDMA with dislocated 
single-branch transmitters, each having their own local oscillator(s), frequency 
synchronisation is cumbersome ([121]).  
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Figure 5-8: Schematic representation of a MIMO OFDM receiver. 

 
After synchronisation, the CP is removed and the Nc-point FFT is done per receiver 
branch. In the context of the unified view, at this point, overall STF detection and decoding 
must be performed to recover the binary data stream. In general, however, because the 
MIMO algorithms are single carrier algorithms, MIMO detection is performed per OFDM 
subcarrier. To that end, the received signals of subcarrier i are routed to the i-th MIMO 
detector to recover the Nt QAM symbols transmitted on that subcarrier. Next, the symbols 
per TX stream are combined and, finally, STF demapping/deinterleaving and decoding are 
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performed on these Nt parallel streams and the resulting data are combined to obtain the 
binary output data. For reliable detection, it is typically necessary that the receiver knows 
the wireless communication channel and keeps track of phase and amplitude drifts. To 
enable estimation of the wireless communication channel, the transmitter occasionally 
sends known training symbols. In WLANs a preamble, which includes channel-training 
sequences, is added to every data packet. Moreover, to track the phase drift, pilot symbols 
are inserted into every MIMO OFDM data symbol on predefined subcarriers. 
 
Finally, note that OFDM has as advantage that it introduces a certain amount of parallelism 
by means of its Nc subcarriers. This fact can be exploited by MIMO OFDM. Namely, if 
MIMO detection is performed per subcarrier, then a given detector is allowed to work Nc 
times slower than the MIMO detector of an equivalent single carrier system with 
comparable data rate. Although in the case of MIMO OFDM Nc of such detectors are 
required, they can work in parallel, which might ease the implementation.   
 

5.4 The Multi-Carrier MIMO Signal Model 
 
In this section, a signal model is introduced for a MIMO OFDM system in which the 
relation between the transmitted and received MIMO OFDM symbols is captured in matrix 
form. With this concise matrix notation we mathematically show that the signal model per 
subcarrier equals the narrowband signal model introduced in Section 4.3. The strength of 
this matrix signal model is that it allows for mathematical evaluations of MIMO OFDM 
systems, including the outage performance and space-frequency analysis of this chapter. 
Furthermore, it can be used for impairment studies such as timing offset and frequency 
offset analyses (see [102, 103, 135]), phase noise analysis ([104]), etc. 
 
Consider a communication system with Nt transmit (TX) and Nr receive (RX) branches 
where, at a sampling interval n, the transmitter sends an Nt-dimensional complex vector 
u(n) and the receiver records an Nr-dimensional complex vector r(n). Furthermore, assume 
that the system is operating in a frequency-selective Rayleigh fading environment and that 
the channel remains constant during a packet transmission, i.e., quasi-static fading. 
Suppose that the channel impulse response can be recorded with L consecutive samples. 
Then, following Section 3.3, the fading channel between the p-th TX and q-th RX antenna 
can be modelled by a discrete-time baseband equivalent (L−1)-th order finite impulse 
response (FIR) filter with filter taps gqp(l), with l = 0, …, L−1. Suppose gqp(l) represents the 
(q,p)-th element of G(l), with p = 1, …, Nt and q = 1, …, Nr, then, recalling (3.36), the 
discrete-time MIMO baseband signal model is given by 
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where v(n) represents Additive White Gaussian Noise (AWGN) at the n-th sample with Nr 
independent and identically distributed (i.i.d.) zero-mean, complex Gaussian elements with 
variance σv

2. The elements of u(n) are assumed zero mean, uncorrelated random variables 
with variance σu

2. So, the expected SNR per receive antenna, say the q-th receive antenna, 
can be shown to be 
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where it is assumed that gq(l) and gq(l') for l ≠ l' are independent, and up is the p-th element 
of u, vq is the q-th element of v, and gq(l) represents the q-th row of G(l). Clearly, the SNR 
per receive antenna equals the total transmitted power (normalised by the path loss) 
divided by the noise power per receive antenna. 
 
To deal with the frequency selectivity of the channel, we apply OFDM utilizing a 
maximum of Nc subcarriers per antenna transmission. To combat Inter Symbol Interference 
(ISI), a guard interval of Ng samples is added per OFDM symbol. When sampled at the 
Nyquist rate, an OFDM symbol, including the guard interval, consists of  Ntot = Nc + Ng 
complex samples. Based on this, n can be written as n = k⋅Ntot + n', where k represents the 
k-th OFDM symbol and n', with n' = 0, …, Ntot – 1, the sample number within that symbol. 
 
OFDM can be introduced to the signal model of (5.7) as follows. Denote the collection of 
QAM symbols to be sent on the k-th MIMO OFDM symbol by 
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where s(i,k) denotes the Nt × 1 MIMO vector that is transmitted on the i-th subcarrier of the 
k-th MIMO OFDM symbol. The dimensions of s'(k) are NcNt × 1. 
 
First, the IDFT is applied at the transmitter (see Figure 5-7). This transforms the frequency 
domain vector s'(k) into the time domain. Without loss of generality, we will assume for 
now that all subcarriers are used. Using (5.2), with Nu = Nc, and denoting the result by 
z'(k), yields 
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where ⊗ represents the Kronecker product and  F–1 equals the Nc × Nc inverse Fourier 
matrix, defined by ([113]) 
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with W = exp(–j2π /Nc). 
 
Second, the cyclic prefix is added. This is done by taking the last NgNt elements of z'(k) 
and stacking them on top of z'(k) to produce the vector u'(k). In matrix notation this can be 
written as 
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where, in this case, 0 is an Ng × (Nc – Ng) dimensional all-zeros matrix.  
 
Finally, the signal is transmitted over the frequency-selective communication channel as 
defined in (5.7). In case ISI occurs, we assume that the only significant interference comes 
from the preceding MIMO OFDM symbol, u'(k − 1). With this assumption, the 
convolution in (5.7) can be represented as 
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where the size of both G' and GISI equals Nr(Nc + Ng) × Nt(Nc + Ng), and G' is defined by  
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where Gl represents 
 
 ( ) ( )llPl GG =  , (5.15) 
 
while GISI is a matrix with all elements equal to zero, except for the Nr(L–1) × Nt(L–1) 
elements of the upper-right corner, they are defined by the upper-triangular block matrix 
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Furthermore, u'(k) and v'(k) are, respectively, defined by 
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Note that, when ISI from more than one MIMO OFDM symbol has to be taken into 
account, matrix notation becomes impractical and one can better use the discrete 
convolution of (5.7). 
 
At the receiver, first, the cyclic prefix is removed. This is done by discarding the first NgNr 
samples of r'(k), and, second, the DFT is performed. Together, this results in 
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where F denotes the Nc × Nc Fourier matrix of which element (a,b) equals W(a – 1)(b – 1) 
([113]), and x'(k) is defined as 
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where x(i,k) denotes the Nr × 1 received MIMO vector on the i-th subcarrier of the k-th 
MIMO OFDM symbol. 
 
Combining all above steps and assuming that no ISI occurs on a MIMO OFDM symbol 
basis (i.e., L ≤ Ng + 1), this leads to the following relation between s'(k) and x'(k): 
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This result may be rewritten as  
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where C is an NrNc × NtNc block circulant matrix given by 
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and n'(k) represents the frequency domain noise, equal to 
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C is a special kind of Toeplitz block matrix where each block of columns is obtained by 
doing a block wrap-around downshift of the previous "block vector". For the remainder of 
this dissertation, we will define the first block of columns by  
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As shown in Appendix A.1.11, the block circulant matrix C can be block-diagonalised by 
pre-multiplying it by (F ⊗ IA) and post-multiplying it by (F−1 ⊗ IB) under the assumption 
that the dimensions of the blocks in C are A × B. The resulting block-diagonal matrix 
contains the Fourier transform of K on its block diagonal. So, finally, (5.21) can be written 
as 
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where (see Appendix A.1.11) 
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So, for the i-th subcarrier we may write 
 
 ( ) ( ) ( ) ( )kikiiki ,,, nsHx += , (5.27) 
 
which results in a flat-fading signal model (as defined in Section 4.3) per subcarrier. 
Assume that the elements of s(i,k) are zero mean, uncorrelated random variables with 
variance σs

2 and that n(i,k) represents Additive White Gaussian Noise (AWGN) with Nr 
independent and identically distributed (i.i.d.) zero-mean, complex Gaussian elements with 
variance σn

2. Then, the expected SNR per receive antenna, say the q-th receive antenna, for 
this equation is given by 
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where sp is the p-th element of s, nq is the q-th element of n, and hq represents the q-th row 
of H. Since we also know that x'(k) equals 
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it is easily verified that the SNR definition of (5.28) equals Ntσu

2/σv
2, which is equivalent 

to the SNR definition of (5.8). Note that, when only Nu out of Nc subcarriers are used for 
transmission, the SNR per receive antenna per signal-bearing subcarrier (frequency-
domain) is higher than SNR per receive antenna per sample (time-domain). This is because 
the signal power in the frequency domain is concentrated on the Nu subcarriers, whereas 
the noise power is equally spread among all Nc tones (see Subsection 5.8.2). When we 
average over all Nc subcarriers (i.e., signal bearing and zero subcarriers), this again would 
(of course) give the same SNR in the frequency domain as in the time domain. 
 

5.5 Capacity 
 

5.5.1 Definition of the Capacity of Wideband Channels 
 
In this section we define the capacity of a MIMO OFDM system, using the signal model 
introduced in the previous section. The open-loop capacity of a frequency-selective 
wideband channel, defined in bits/s/Hz, can be obtained by dividing the frequency band in 
a number of narrowband channels and averaging over the capacity of these narrowband 
channels. The open-loop capacity of a narrowband channel is defined in Section 4.4.5. For 
an infinite amount of narrowband subchannels this results in 
 

 ( ) ( )∫ 







+=

B

H

t
N dfff

NB
C

r
HHI ρdetlog1

2  bits/s/Hz , (5.30) 

 
where H(f) represents the frequency response of the MIMO channel and B the system 
bandwidth. When the frequency band is divided in a discrete number of frequency-flat 
subchannels, say Nc, then the open-loop capacity is given by 
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where H(i) denotes the channel of the i-th subchannel. 
 

5.5.2 Outage Packet Error Rate Performance 
 
In line with the narrowband definition of outage PER performance provided in Subsection 
4.4.6, we can also define the outage PER for a wideband channel. In an open-loop system, 
there will always be a finite probability that a given frequency-selective channel does not 
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support the bit rate that is chosen by the transmitter, simply because the theoretical 
capacity of that channel is lower. This results in a packet error. By averaging over different 
channel realisations, the outage PER for a given bit rate is obtained. 
 

5.6 Space-Frequency Analysis 
 
In this section, a Space-Frequency (SF) analysis is performed to provide theoretical 
guidelines for proper SF code design. In the analysis, we omit the MIMO OFDM symbol 
index k for brevity. Let c' and e' be two possible space-frequency codewords, where 
c' = (cT(0) … cT(Nc – 1))T and e' = (eT(0) … eT(Nc – 1))T, and c(i) and e(i) are the Nt × 1 
parts of the two possible codewords for the i-th subcarrier, and let H' be the representation 
of the SF channel as introduced in Section 5.4. Then the PEP between any pair of 
codewords, for a given SF channel H', can be shown to be (by applying the principle of 
Figure 4-13) 
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or, using the Chernoff upperbound, 
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Define y as 
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Following the analysis of Subsection 4.10.2 and averaging over all channel realisations 
leads to the PEP upperbound: 
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where Qy denotes the covariance matrix of the above defined y. With the channel 
definition of (5.26), with C = (c(0) … c(Nc – 1)) and E = (e(0) … e(Nc – 1)), and with the 
Kronecker identity (A.12) of Appendix A.1.10, it can be shown that y equals 
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where D represents the Nc × Nc diagonal matrix 
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Since we assume that there is no correlation between the taps of the channel impulse 
response, it follows that E[vec(G(l))vec(G(l'))H] = 0 for all l ≠ l'. Furthermore note that y 
has a mean of zero (because c' and e' are also zero mean). As a result, the covariance 
matrix Qy can be shown to be equal to 
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To include spatial correlation, an equivalent spatial correlation definition as presented in 
Section 3.6 in (3.49) is used per channel delay tap. This results in 
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which is similar to the solution found in [20], except that we not only include the spatial 
correlation of the receiver side, but also that of the transmitter side. Factorising RTX,l and 
RRX,l into their square roots (according to (3.56)) yields 
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where B(C,E) is the NcNr × LNtNr block matrix 
 
 ( ) ( ) ( )( )1,,0,,, −= LECBECBECB L , (5.41) 
 
with the l-th block equal to 
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When we assume that Nc > LNt, clearly, the maximum rank of B(C,E) (and Qy) is LNtNr. 
This means that the maximum achievable diversity order equals LNtNr. Based on above 
analysis, [20] introduces a number of design criteria for SF codes. When the available 
diversity is high enough, however, in line with the arguments of Subsection 4.2.2 and the 
simulation results of Subsection 4.11.2, the Euclidean distance criterion might be more 
appropriate. 
 
To show this, assume that the channel elements are independent, i.e., there is no spatial 
fading correlation. Under this assumption, RTX,l's and RRX,l's are identity matrices. Hence, 
Qy equals 
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Moreover, we will use the property that a determinant of the form det(IN + αA) can be 
factorised as 
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Let λi be the i-th nonzero eigenvalue of Q'y. Since we already found that Qy has a 
maximum rank of LNtNr, Q'y will have a maximum rank of LNt. When Ni denotes the 
actual rank of Q'y, based on above factorisation and using the fact that the sum of the 
diagonal entries of a matrix equals the sum of its eigenvalues and that the determinant of a 
matrix equals the product of its eigenvalues, we can upperbound the PEP as follows: 
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Now, using the same argumentation as in [4], one can see that this upperbound captures the 
effect of the frequency and receiver diversity on the code design, by means of Ni and Nr, 
respectively. For example, for a large frequency diversity and/or a large number of receive 
antennas, the packet error rate of interest (e.g., 10-2) is typically achieved at small SNRs. 
Note that the SNR is proportional to σs

2/σn
2. For such small SNRs, it is clear that the term 

consisting of the summation of the eigenvalues will dominate the bound. For 
asymptotically high SNRs, however, the term containing the product of the eigenvalues 
will be dominant, resulting in the diversity and coding gain criteria introduced in [116]. 
The rule to optimise the former term is usually called the trace criterion because the sum 



5.6  Space-Frequency Analysis 141 

of the eigenvalues of a matrix equals the sum of its diagonal entries, i.e. the trace of the 
matrix. It can be shown that the trace of Q'y equals 
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where we assumed that the total power of the PDP equals one. Since in this case the trace 
equals the Euclidean distance between the SF codewords, the trace criterion is also called 
the Euclidean distance criterion. As a result, for high diversity orders and/or low SNR 
values, maximising the Euclidean distance between any two codewords is a better design 
rule than those based on the diversity and coding gain criteria. In [63] it is shown by 
simulations that the trace criterion is already applicable for values as low as L = 2 and 
Nr = 2. 
 
To further simplify the code search, a technique called subcarrier grouping can be applied. 
From the channel model of (5.26), it follows that subcarriers are independent when they 
are separated by a multiplicity of Nc/L subcarriers. Following [147], we can group the 
subcarriers that have independent fades into Ncg groups of L subcarriers. Without loss of 
generality we will assume for this analysis that Ncg is a positive integer such that NcgL = Nc. 
When defining c(η, g) = c(η⋅Ncg + g) and e(η, g) = e(η⋅Ncg + g), for g = 0, …, Ncg – 1 and 
η = 0, …, L – 1, this results in the conditional PEP 
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The principle of subcarrier grouping is explained in Figure 5-9, in which it is assumed 
without loss of generality that a certain SISO channel undergoes block fading over 
frequency. The different grey shades represent independent fading snapshots. 
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Figure 5-9: The principle of subcarrier grouping. 
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yields 
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Averaging over all channel realisations, in line with the analysis of Subsection 4.10.2, 
results in the following PEP upperbound: 
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where Qy(g) is the covariance matrix of y(g). Now, we can follow the same steps as in the 
general analysis at the beginning of this section to analyse the PEP in case of subcarrier 
grouping. In accordance with those steps, we define C(g) = (c(0, g) … c(L – 1, g)) and 
E(g) = (c(0, g) … c(L – 1, g)) as two possible Nt × L codeword matrices of the g-th 
subcarrier group. Then by applying (A.12) we can show that 
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where D(g) equals the L × L diagonal matrix 
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Finally, we can show that 
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where Bg(C(g),E(g)) is the LNr × LNtNr block matrix 
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of which the l-th block equals 
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From above analysis, we clearly see that the maximum rank of Bg(C(g),E(g)) and, thus, 
Qy(g) equals LNr. Apparently, the transmit diversity is lost due to the application of 
subcarrier grouping. This can be explained by the fact that every subcarrier group is loaded 
with independent data, hence, achieving a "multiplexing gain". If we require the full 
diversity gain LNtNr, we can add the time dimension to the analysis, which leads to the 
STF results of [147]. When taking these concepts together, we can trade off multiplexing 
gain and diversity gain (see also [73]). 
 
Also for the subcarrier grouping result, the PEP upperbound can be factorised. Under the 
assumption that there is no spatial correlation, this yields 
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where Ni is the rank of the summation over all Q'y(g)'s. Using (5.46), it is easily verified 
that 
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As a result, due to subcarrier grouping, the trace criterion, i.e., maximising the Euclidean 
distance between any pair of Space-Frequency codewords, is simplified to maximising the 
Euclidean distance between any two codewords of a subcarrier group. 
 

5.7 Coded Space Division Multiplexing OFDM 
 

5.7.1 Introduction 
 
In the previous section it was shown that, when the potential diversity gain is high enough 
and the SNR of interest is low enough, the traditional code design criterion of maximising 
the minimum Euclidean distance between any pair of codewords (||C – E||) is more 
appropriate than specific Space-Frequency code design rules, i.e., the diversity and coding 
gain criteria as defined in, e.g., [20]. This can be explained by the fact that, when a 
reasonably large diversity gain is achievable through transmit, receive, and/or frequency 
diversity, a frequency-selective MIMO fading channel converges to a Gaussian channel 
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(based on the Central Limit Theorem ([90])) under the condition that proper encoding is 
applied across the diversity dimensions. As a result, under above conditions, standard 
SISO codes together with some form of space and frequency multiplexing may outperform 
handcrafted Space-(Time-)Frequency codes. Based on this argument, the concatenation of 
coding with the straightforward multiplexing over space and frequency of Space Division 
Multiplexing (SDM) OFDM is a promising starting point. Moreover, such a coded SDM 
OFDM scheme offers the flexibility of easily adapting the constellation order and/or 
coding rate. Basically, there are two options to add coding to SDM OFDM, namely Joint 
Coding (JC) and Per-Antenna-Coding (PAC), which are explained in the next subsections. 
 

5.7.2 Joint Coding 
 
In Joint Coding (JC), also referred to as vertical coding ([146]), the information bit stream 
is first encoded and then converted into Nt parallel substreams of which each is modulated 
and mapped onto the corresponding transmit antenna. A transmitter scheme in which JC is 
applied to SDM OFDM is shown in Figure 5-10, where S/P denotes the serial-to-parallel 
conversion. After the S/P block, each branch in parallel performs interleaving (Π), QAM 
mapping, pilot insertion, Nc-point IFFT, and adds a Cyclic Prefix before the final TX signal 
is shaped, converted up to the Radio Frequency (RF), and transmitted. 
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Figure 5-10: Schematic representation of a Joint-Coded SDM OFDM transmitter. 

 
A schematic representation of an SDM OFDM receiver for JC transmissions is given in 
Figure 5-11. Disregarding the blocks for synchronisation tasks, the receiver first generates 
a digital representation of the Nr down-converted received signals by means of the ADCs. 
Second, the OFDM processing is performed per branch up to the FFT outputs. At this 
point, SDM detection is performed per subcarrier. To that end, the received signals of 
subcarrier i are routed to the i-th SDM detector to recover the Nt transmitted symbols on 
the corresponding subcarrier. After that, symbols per transmitter stream are combined, and 
demapping and deinterleaving is performed for these Nt parallel streams. Finally, the 
resulting streams are converted to a serial stream that, in turn, is decoded to generate the 
binary output sequence. Note that for the SDM detection, we can apply all SDM schemes 
described in Chapter 4. 
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Figure 5-11: Schematic representation of a SDM OFDM receiver for a Joint-Coding 

architecture at the transmitter. 
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5.7.3 Per-Antenna-Coding 
 
In Per-Antenna-Coding (PAC) schemes, the incoming bit stream is first transformed to Nt 
parallel substreams and then encoding is performed per substream. So, basically, the 
transmitter consists of Nt OFDM transmitters among which the information bits are 
multiplexed ([130]), as shown in Figure 5-12. 
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Figure 5-12: Schematic representation of a Per-Antenna-Coded 

SDM OFDM transmitter. 
 
The receiver for a PAC transmitter is exactly the same as that for a JC transmitter up to and 
including the interleavers. The difference is that after interleaving the Nt detected 
substreams are first decoded per stream before they are converted into a serial stream. A 
schematic representation of such a receiver is given in Figure 5-13. 
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Figure 5-13: Schematic representation of an SDM OFDM receiver for a Per-Antenna-

Coding architecture at the transmitter. 
 
For the SDM detection in the PAC receiver all SDM schemes of Chapter 4 can be applied. 
Moreover, for Successive-Interference-Cancellation schemes there exists an extra option, 
namely, feeding the SIC signals first through the decoding stage before actually 
performing the cancellation. In this way, Forward-Error-Correcting coding is performed on 
the SIC information. How this can be applied to MIMO OFDM is schematically 
represented in Figure 5-14. We introduced this concept in [130] where we called it PAC V-
BLAST. 
 
To improve the performance even more, the SIC scheme (either using ZF or MMSE) 
should produce soft-decision outputs. In order to obtain them, the estimated values of each 
Nulling Unit should not be sliced to their respective QAM points as done in [144], but they 
should be used to generate soft values according to (4.71), with the proper Q as defined in 
Subsections 4.6.4 and 4.7.3 for SOZF and SOMMSE, respectively. Note that, during the 
SIC process, H changes (see Subsections 4.8.1 and 4.9.1), and since Q (required to obtain 
the qk'k' of (4.71)) is a function of H, it must change accordingly. It turned out that when we 
used these soft value definitions for SOZF with SIC or SOMMSE with SIC in the JC case 
that the performance did not improve, but deteriorated. The explanation is that apparently 
the scaling of (4.71) due to the changing Q during the SIC process is incorrect. For PAC, 
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however, the inherent structure of a PAC receiver results in a decoding per TX stream and, 
as a result, the inputs per convolutional decoder all have the same (but incorrect) scaling 
factor qk'k', still leading to a proper decoding because the soft values still have a correct 
relative value. This last argument does not hold for the decoding of a JC scheme. A proper 
definition of soft values for SIC schemes is a topic for further research. 
 
Note that since the SIC information is passed through a decoder and encoder stage, a 
disadvantage of this scheme could be its latency. But when the interleaver size is small, 
and convolutional encoding and Viterbi decoding are used, the encoder in the SIC 
feedback loop can start its operation as soon as the Viterbi decoder produces outputs. Then, 
for a limited number of transmit antennas, the latency is manageable. 
 
As example, consider an implementation based on the WLAN IEEE 802.11a standard 
(more details on the parameters can be found in the next section). The interleaver and 
deinterleaver in the SIC loop both operate on an OFDM symbol basis, so their respective 
latency is at most 3.2 µs (4 µs minus Guard Interval). The delay of the Viterbi decoder is 
directly related to its trace-back depth. A common rule of thumb is to take the trace-back 
depth equal to six times the constraint length of the encoder. The constraint length of the 
IEEE 802.11a encoder is seven. Consequently, the delay of the Viterbi decoder equals 42 
samples or 42/20 MHz = 2.1 µs. Finally, the delay of the encoder is equal to its memory 
size times the sample period. For the IEEE 802.11a encoder this is 300 ns. So, the total 
latency per loop is at most 2*3.2 + 2.1 + 0.3 = 8.8 µs. 
 
Another disadvantage may be that the optimal ordering ([144]), for the sequence in which 
the SIC is performed (e.g., it is best to perform detection in the order of signal strength) 
cannot be applied per subcarrier but only per substream, inherent to the decoding structure. 
Hence, this per-substream ordering does not take into account the different frequency 
selectivity of the various substreams, but simulations in this chapter show that its 
performance is nevertheless close to SOMLD. 
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Figure 5-14: Multi-antenna receiver with Per-Antenna-Coded SIC and OFDM. 
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5.8 Simulations 
 

5.8.1 Simulation parameters 
 
The JC and PAC systems proposed in the previous section have been programmed in 
MATLAB to be able to evaluate their performance. The main parameters that are used for 
the simulations are based on the IEEE 802.11a WLAN standard ([57]). An overview of 
these parameters is listed in Table 5-1. 
 

Table 5-1: Main parameters based on the IEEE 802.11a OFDM standard. 

Constellation diagrams BPSK, QPSK, 16-QAM, 64-QAM 
Coding rate (R) 1/2, 2/3, 3/4 
Number of subcarriers (Nc) 64 
Number of subcarriers used for data (Nu) 48 
Number of pilot tones (Np) 4 
OFDM symbol duration 4 µs 
Guard interval 800 ns 
Subcarrier spacing 312.5 kHz 
–3 dB bandwidth 16.56 MHz 
Channel spacing 20 MHz 

 
A key parameter, which largely determines the choice of the other parameters, is the guard 
interval of 800 ns ([127]). This guard interval provides robustness to rms delay spreads up 
to several hundreds of nanoseconds, depending on the chosen coding rate and constellation 
diagram. In practice, this means that an OFDM system with a guard time of 800 ns is 
robust enough to be used in any indoor environment, including large factory buildings 
([126]). It can also be used in outdoor environments, although directional antennas may be 
needed in this case to reduce the delay spread to an acceptable amount and to increase the 
range. 
 
In order to limit the relative amount of energy spent on the guard time, the OFDM symbol 
duration was chosen to be 4 µs. This also determined the subcarrier spacing to be 312.5 
kHz, which is the inverse of the symbol duration minus the guard time. By using 48 data 
subcarriers, uncoded data rates of 12 to 72 Mbps can be achieved by using variable 
constellation sizes from BPSK to 64-QAM. In addition to the 48 data subcarriers, each 
OFDM symbol contains four pilot subcarriers, which can be used to track the residual 
carrier frequency offset that remains after an initial frequency offset correction during the 
training phase of the packet. Moreover, the low frequency components of the phase noise 
generated by non-ideal oscillators can be estimated and corrected for. Without correction, 
these two impairments would cause a common phase drift on all subcarriers. Note that, in 
the IEEE 802.11a standard, the total of 52 subcarriers used are distributed equally around 
the 0th subcarrier. This 0th subcarrier and the others are set to zero. So, denoting only the 
used subcarriers out of the 64 with an index, this results in the following subcarrier layout: 
{0, 0, 0, 0, 0, 0, –26, …, –1, 0, 1, …, 26, 0, 0, 0, 0, 0}. 
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In order to correct for subcarriers in deep fades, forward error correction across the 
subcarriers is used with variable coding rates, giving coded data rates from 6 up to 54 
Mbps. Convolutional coding is used with the industry standard rate 1/2, constraint length 7 
code with generator polynomials (133,171). Higher coding rates of 2/3 and 3/4 are 
obtained by puncturing the rate 1/2 code. 
 
For the simulations in this chapter we will assume that the receiver has perfect knowledge 
about the channel (i.e., perfect CSI) data rate, and packet size. Furthermore, we will 
assume that the time and frequency synchronisation is optimal. Hence, we can ignore any 
training and/or preamble processing and focus on the performance of the different MIMO 
OFDM schemes. 
 

5.8.2 SNR versus Bit Energy-to-Noise Density Ratio 
 
All simulation results in the next subsection are provided as function of the average SNR 
per RX antenna, but if one wants to make a fair performance comparison of systems with 
different coding schemes or constellation schemes in terms of energy spent per bit, 
commonly, the error-rate performance as function of the bit energy-to-noise density ratio 
Eb/N0 is used. To be able to translate the results of the next subsection to average Eb/N0 per 
RX antenna, this subsection provides the relation between Eb/N0 and the average SNR per 
RX antenna, here defined as the average SNR at the input of the RX baseband processing 
and denoted by Es/N0. 
 
In the baseband processing of a MIMO OFDM transmission system, there are a number of 
subsequent blocks that have an influence on the relation between Eb/N0 and Es/N0. These 
blocks are: 
 

- the encoder with coding rate R (R < 1), 
- the modulation block that maps m bits on a 2m-ary modulation scheme, 
- the spatial mapper that maps Nt symbols on Nt transmit antennas, 
- the Nc-point IFFT that maps Nu symbols on Nu subcarriers (Nu < Nc) , 
- and a block that performs the guard time extension (cyclic prefix). 

 
Now, assume that the communication between transmitter and receiver is scaled such that 
the variance of the propagation attenuation equals σc

2 = 1. Then, recalling Equation (4.31), 
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the relation between Eb/N0 and Es/N0 can be determined per above described block, 
assuming that the TX processing only comprises that specific block. 
 
The first three blocks give a result equivalent to the single carrier MIMO case described in 
Section 4.5. For this case the relation is 
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Putting Nu bits on Nu subcarriers using an Nc-point IFFT results in Ts = NuTb/Nc. By 
substituting this into Equation (5.58), the symbol-energy to noise-density ratio per receive 
antenna equals 
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Note that when we want to take the overhead of pilot tones into account, we should not use 
the total amount of subcarriers used, but Nu minus the number of pilots in above equation. 
 
Adding a cyclic prefix (i.e., guard time) of time TG to an OFDM symbol of length TFFT 
leads to the relation Ts = TFFT⋅Tb/Ttot, where Ttot = TG + TFFT.  Thus 
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For a MIMO OFDM system all the above blocks are combined in a serial way, so finally, 
for this type of systems, this leads to the following relation (with TFFT = Nc⋅Ts) : 
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Note that the spectra efficiency ηeff is bits/s/Hz equals the ratio of the bit rate, NtRmNu/Ttot, 
and bandwidth, B. 
 

5.8.3 Simulations results 
 
The main goal of this subsection is to compare the various proposed coded SDM OFDM 
schemes for different antenna configurations and for different rms delay spreads. Since, in 
general, the main application of WLANs are indoor environments, we will apply the 
uncorrelated NLOS wideband Rayleigh fading model described in Subsection 3.3.2 as 
channel model, unless mentioned otherwise. For the decoding of the convolutional code a 
Viterbi decoder is used. From [40], it is known that a Viterbi decoder performs better when 
soft decisions are applied as input. Therefore, for the detection of JC transmissions, SOZF, 
SOMMSE and SOMLD are used, and for the detection of PAC transmissions, MMSE with 
SIC is applied with soft-decision output values generated as described in Subsection 5.7.3. 
In the remainder of this section the last scheme is referred to as PAC SIC. As a 
performance measure, we will use the average SNR per RX antenna that is required to 
achieve a PER of 10–2, or 1%. The packet size is chosen to be 64 bytes1 and the BER and 
PER performances are obtained by averaging over 10,000 packets undergoing independent 
channel realisations. Furthermore, for each plot a 1 × 1 curve using the same coding rate 
and constellation size as each of the multiple antennas is given as benchmark and, when 
the outage PER as defined in Subsection 5.5.2 does not fall below the SNR range of the 

                                                 
1 Note that, compared to 64 byte packets, for 1000 byte packets, on average we saw for comparable PERs an 
SNR degradation of about 1.5 dB, except for high delay spreads where we observed degradations over 5 dB. 
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simulation results, it is also shown. Note that for the 1 × 1 case all of above mentioned 
schemes overlap, since for this case there is no difference in the processing. 
 
The first set of simulations is done for a wideband Rayleigh fading channel with an rms 
delay spread of 50 ns, for QPSK and a coding rate of ½. The BER and PER performance 
versus the average SNR per receive antenna (in dB) for a 2 × 2 system, 3 × 3 system, 4 × 4 
system, and 2 × 3 system are given in Figure 5-15, Figure 5-16, Figure 5-17, and Figure 
5-18, respectively. Since the constellation size and coding rate is kept the same, the 1 × 1 
curves of these figures are the same. The total data rate is given by Nt times the coding rate 
times the number of bits per constellation symbol times the number of data subcarriers 
divided by the OFDM symbol length (in time). This results for the 1 × 1, 2 × 2, 3 × 3, and 
4 × 4 case in a respective data rate of 12 Mbps, 24 Mbps, 36 Mbps, and 48 Mbps. 
Accordingly, the outage PER is shown in Figure 5-15, Figure 5-16, and Figure 5-17 for 
capacities of 24/20 = 1.2 bits/s/Hz, 36/20 = 1.8 bits/s/Hz, and 48/20 = 2.4 bits/s/Hz, 
respectively. We can make a number of observations. 
 
First, the diversity order increases for SOMMSE, PAC SIC, and SOMLD when going to 
antenna configurations with higher numbers of antennas. Apparently, the schemes benefit 
from higher receiver diversity. This leads for the region of interest to a better performance 
than the 1 × 1 case, even while the total data rate is increased. SOZF, however, tends to 
follow the 1 × 1 curves and slightly loses in performance when going to an antenna 
configuration with more antennas.  
 
Second, for a PER of 1%, for the 2 × 2, 3 × 3, and 4 × 4 simulations, the results are far off 
from the outage PER, namely, about 7 dB. Part of this big difference can be explained by 
the inherent overhead of the MIMO OFDM symbol structure: only 48 out of 64 subcarriers 
are used for data and only 3.2 µs of the 4 µs packetlength is non-redundant due to the 
guard interval. As a result, the performance loss/energy loss compared to the outage PER is 
already 10⋅log10(4/3.2 ⋅ 64/48) ≈ 2.2 dB. The remaining gap is 4.8 dB, so there is still room 
for improvement and it would be desirable to find schemes that perform closer to the 
outage PER. 
 
Third, when an extra receive antenna is added to the 2 × 2 system (compare Figure 5-15 
and Figure 5-18), the extra diversity gain makes that all coded SDM OFDM schemes at a 
PER of 1% perform in a small range of 2.5 dB from each other. Moreover, the 
performance is 5-7 dB better than the 1 × 1 case, while achieving a twice as high data rate. 
 
Since in the previous simulation results the PAC SIC and JC SOMLD detection performed 
the best, these schemes are used to verify the performance for different rms delay spreads. 
The results for a 3 × 3 system with constellation scheme QPSK and a coding rate of ½ is 
given in Figure 5-19, for rms delay spreads of 10 ns, 100 ns, and 250 ns. The 50 ns curves 
can be found in the previous figures. Moreover, it turned out that the curves of the coded 
SDM OFDM schemes for an rms delay spread of 100 ns and 250 ns were very similar. 
Therefore, the former results are not shown. It can be concluded that the MIMO OFDM 
schemes, especially for low rms delay spreads, achieve a better performance than the SISO 
case due to the spatial diversity gain. For higher rms delay spreads the additional spatial 
diversity on top of the frequency diversity does not provide much gain compared to the 
1 × 1 performance. This can be explained by the fact that, when an extra degree of 
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diversity is added, the highest performance improvements are achieved for the first 
diversity improvements. 
 

2 4 6 8 10 12 14 16
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

SNR per RX antenna (dB)
2 4 6 8 10 12 14 16

10
-4

10
-3

10
-2

10
-1

10
0

P
E

R

SNR per RX antenna (dB)

outage
1 ×  1
SOZF
SOMMSE
PAC SIC
SOMLD

 
Figure 5-15: BER and PER versus mean SNR per receive antenna for a 2 × 2 system 

in a Rayleigh fading channel with an exponentially decaying PDP with 50 ns rms 
delay spread for QPSK, rate ½ convolutional coding (24 Mbps), 64 byte packets, and 

different SDM detection schemes. Also the 1 × 1 curves are given as reference. 
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Figure 5-16: BER and PER versus mean SNR per receive antenna for a 3 × 3 system 

in a Rayleigh fading channel with an exponentially decaying PDP with 50 ns rms 
delay spread for QPSK, rate ½ convolutional coding (36 Mbps), 64 byte packets, and 

different SDM detection schemes. For SOMLD, both the curves with quantisation 
normalisation (q.n.) defined in (4.79) with Nq = 8 and without q.n. are presented. Also 

the 1 × 1 curves are given as reference. 



152  Chapter 5  MIMO OFDM 

 

0 5 10 15 20
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

SNR per RX antenna (dB)
0 5 10 15 20

10
-4

10
-3

10
-2

10
-1

10
0

P
E

R

SNR per RX antenna (dB)

outage
1 ×  1
SOZF
SOMMSE
PAC SIC
SOMLD

 
Figure 5-17: BER and PER versus mean SNR per receive antenna for a 4 × 4 system 

in a Rayleigh fading channel with an exponentially decaying PDP with 50 ns rms 
delay spread for QPSK, rate ½ convolutional coding (48 Mbps), 64 byte packets, and 

different SDM detection schemes. Also the 1 × 1 curves are given as reference. 
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Figure 5-18: BER and PER versus mean SNR per receive antenna for a 2 × 3 system 

in a Rayleigh fading channel with an exponentially decaying PDP with 50 ns rms 
delay spread for QPSK, rate ½ convolutional coding (24 Mbps), 64 byte packets, and 

different SDM detection schemes. Also the 1 × 1 curves are given as reference. 
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Figure 5-19: BER and PER versus mean SNR per receive antenna for a 3 × 3 system 
in a Rayleigh fading channel with an exponentially decaying PDP with various rms 

delay spreads for QPSK, rate ½ convolutional coding (36 Mbps), 64 byte packets, and 
different SDM detection schemes. Also the 1 × 1 curves are given as reference. 

 
When comparing Figure 5-15 through Figure 5-20, it can be seen that PAC SIC performs 
better than SOMLD for high rms delay spreads (with an exponentially decaying PDP) and 
low constellation sizes. For low rms delay spreads SOMLD performs better, which can be 
explained by the fact that the spatial diversity order of MMSE with SIC for high SNRs 
tends towards Nr – Nt + 1, whereas that of SOMLD is equal to Nr (see Chapter 4). On the 
other hand, for high rms delay spreads, the frequency diversity plays a more important role 
which leads to advantages for PAC. Namely, in PAC, per TX stream a convolutional 
encoder with a free distance of 10 is used, by which up to a 10th-order frequency diversity 
can be exploited, whereas in JC the gain of this free distance is divided among both the 
frequency and spatial diversity. 
 
With respect to higher constellation orders, the likelihood reduces that the feedback 
information used for SIC is correct, which results in a performance penalty for PAC SIC 
over SOMLD. The cases where PAC SIC performs better than SOMLD can be explained, 
next to above described extra frequency diversity gain, by the way the soft-decision output 
values are generated. Due to non-orthogonal MIMO channels, received MIMO vectors will 
have dependent elements, which for JC SOMLD will result in dependent soft values. It is 
well known that the Viterbi decoder only performs optimally if the input values are 
independent. A solution would be to calculate joint LLRs ([55]) and, accordingly, change 
the decoder to handle these joint soft-values. Since the PAC SIC results are based on 
MMSE with SIC, it first orthogonalises the data streams and then determines the soft 
values and, hence, PAC SIC does not have the above mentioned problem, which explains 
its better performance. 
 
To further investigate the effect of larger constellation diagrams, Figure 5-20, Figure 5-21, 
and Figure 5-22 show the performance results for a 3 × 3 system with coding rate ¾, 16-
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QAM (i.e., 108 Mbps) and 64-QAM (i.e., 162 Mbps), and rms delay spreads of 50 ns and 
250 ns. 
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Figure 5-20: BER and PER versus mean SNR per receive antenna for a 3 × 3 system 

in a Rayleigh fading channel with an exponentially decaying PDP with 50 ns rms 
delay spread for 16-QAM, rate ¾ convolutional coding (108 Mbps), 64 byte packets, 
and different SDM detection schemes. Also the 1 × 1 curves are given as reference. 
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Figure 5-21: BER and PER versus mean SNR per receive antenna for a 3 × 3 system 

in a Rayleigh fading channel with an exponentially decaying PDP with 50 ns rms 
delay spread for 64-QAM, rate ¾ convolutional coding (162 Mbps), 64 byte packets, 
and different SDM detection schemes. Also the 1 × 1 curves are given as reference. 
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Figure 5-22: BER and PER versus mean SNR per receive antenna for a 3 × 3 system 

in a Rayleigh fading channel with an exponentially decaying PDP with 250 ns rms 
delay spread for 16-QAM, rate ¾ convolutional coding (108 Mbps), 64 byte packets, 
and different SDM detection schemes. Also the 1 × 1 curves are given as reference. 

 
We can observe the following. Firstly, for high constellation sizes, SOZF and SOMMSE 
are performing very similar in the region of interest. Apparently, the required SNR is so 
high that the pseudo inverse of ZF and the weight matrix of MMSE are approximately the 
same resulting in approximately equivalent performance. 
 
Secondly, for symmetric antenna configurations with high constellation orders, the coded 
SDM OFDM schemes perform worse than the 1 × 1 case. Since the lattice of all possible 
points to decode becomes more and more complex when going to a higher constellation 
size and to more transmit antennas, the performance particularly suffers from non-
orthogonal MIMO channels. As a result, the performance penalty for MIMO systems when 
going to a higher constellation order is worse than that for SISO systems. 
 
Thirdly, in line with above observation, for high constellation sizes coded SDM OFDM 
systems suffer more from high rms delay spreads than SISO coded OFDM systems; 
compare Figure 5-22 and Figure 5-19, where we see that in Figure 5-22, for 250 ns, the ISI 
already causes an irreducible error-rate floor. 
 
As we can already conclude from Figure 5-21, it appears that for some scenarios average 
SNRs per receive antenna of over 30 dB are required for a PER of 1%. For a lower rms 
delay spread the performance, due to less frequency diversity gain, will even be worse. For 
example, see Figure 5-23 where the BER and PER performance of a 2 × 2 system is shown 
for 16-QAM, coding rate ¾, and an rms delay spread of 10 ns. Also in this case it can be 
observed that for SOZF and SOMMSE SNRs of over 30 dB are required for a PER of 10–2. 
Compared to 16-QAM, simulations have shown that 64-QAM would even require an SNR 
of approximately 34 dB which, when also considering, say, 5 dB extra for implementation 
losses, would lead to unrealistic requirements for low-cost implementation. One way to 
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reduce these required average SNRs per RX antenna and, thus, to relax the transceiver 
design, is by adding an extra receiver branch. For 16-QAM, coding rate ¾, and an rms 
delay spread of 10 ns, this results in the performance curves of Figure 5-24, where we 
observe a substantial diversity gain. Also from 2 × 3 simulations with 64-QAM we 
observed a considerable diversity gains and an SNR of only 26 dB is required for a PER of 
1%. Furthermore, note that higher rms delay spreads will result in better performances, due 
to extra frequency diversity gain (as long as ISI does not occur). 
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Figure 5-23: BER and PER versus mean SNR per receive antenna for a 2 × 2 system 

in a Rayleigh fading channel with an exponentially decaying PDP with 10 ns rms 
delay spread for 16-QAM, rate ¾ convolutional coding (72 Mbps), 64 byte packets, 
and different SDM detection schemes. Also the 1 × 1 curves are given as reference. 

 
As already concluded at the end of Subsection 4.11.1, the SDM performance degrades for 
a given SNR when the channel is not Rayleigh faded but Ricean faded. Figure 5-25 and 
Figure 5-26 show the respective losses compared to Figure 5-23 and Figure 5-24 when 
systems with the same configuration undergo Ricean fading with a K-factor of 10. For 
these simulations, the wideband Ricean fading model described in Subsection 3.3.3 is used 
where the specular component is obtained by (3.31) with steering vectors with random 
phases as described by (3.33). When comparing Figure 5-23 and Figure 5-25, we clearly 
see that the SDM algorithms based on estimation techniques, i.e., SOZF, SOMMSE, and 
PAC SIC, require a 10 dB higher SNR to achieve a PER of 1%, whereas the algorithm 
based on detection, SOMLD, only loses 4 dB. For the 2 × 3 case, these losses are 
respectively 8 and 5 dB. So, apparently, SOMLD suffers the least from going to a scenario 
with a strong specular path. Finally, we can conclude from the 2 × 3 case that MIMO 
communication at an appreciable rate of 72 Mbps is still feasible in a Ricean fading 
environment with a K-factor as high as 10, even for SOZF and SOMMSE. 



5.8  Simulations 157 

 

10 15 20 25 30

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

SNR per RX antenna (dB)
10 15 20 25 30

10
-3

10
-2

10
-1

10
0

P
E

R

SNR per RX antenna (dB)

1 ×  1
SOZF
SOMMSE
PAC SIC
SOMLD

 
Figure 5-24: BER and PER versus mean SNR per receive antenna for a 2 × 3 system 

in a Rayleigh fading channel with an exponentially decaying PDP with 10 ns rms 
delay spread for 16-QAM, rate ¾ convolutional coding (72 Mbps), 64 byte packets, 
and different SDM detection schemes. Also the 1 × 1 curves are given as reference. 
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Figure 5-25: BER and PER versus mean SNR per receive antenna for a 2 × 2 system 

in a Ricean fading channel with K = 10 and an exponentially decaying PDP with 10 ns 
rms delay spread for 16-QAM, rate ¾ convolutional coding (72 Mbps), 64 byte 

packets, and different SDM detection schemes. 
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Figure 5-26: BER and PER versus mean SNR per receive antenna for a 2 × 3 system 

in a Ricean fading channel with K = 10 and an exponentially decaying PDP with 10 ns 
rms delay spread for 16-QAM, rate ¾ convolutional coding (72 Mbps), 64 byte 

packets, and different SDM detection schemes. 
 

5.9 Conclusions and Recommendations 
 
The combination of SDM and OFDM is discussed in this chapter. First the general 
principle of MIMO OFDM is explained and its signal model is introduced after which a 
Space-Frequency analysis is performed. From this analysis, it is concluded that, when the 
diversity order is high enough (four or more) and the SNR is low enough, maximising the 
minimum Euclidean distance between any pair of codewords is a more appropriate design 
rule than the rank and determinant criteria. As a result, under above conditions, standard 
SISO codes together with proper form of space and frequency multiplexing outperforms 
handcrafted Space-(Time-)Frequency codes.   
 
The straightforward coded SDM OFDM schemes introduced in this chapter, based on 
simply demultiplexing a one-dimensional code over the spatial and frequency dimension, 
still perform at least 7 dB worse than the outage performance. 2.2 dB of the 7 dB, however, 
is imposed by the OFDM overhead, i.e., the guard subcarriers and guard time. So, 
apparently there is still enough room available for improvements, challenging us to find 
more efficient ways of implementing the Euclidean distance criterion. When latency is not 
the issue, a promising solution would be to introduce the turbo processing, as described for 
narrowband MIMO transmissions in Section 4.13, to the MIMO OFDM context. 
 
Simulations with different SDM detection algorithms for the proposed coded SDM OFDM 
schemes showed that the introduced detection scheme for a PAC transmission, based on 
SOMMSE and SIC in which the SIC information is fed through a Forward Error 
Correcting loop (referred to as PAC SIC), achieves equivalent PER performances as the 
complex SOMLD, but the complexity of PAC SIC only grows polynomial with the 
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number of TX antennas. The only disadvantage is that PAC SIC introduces extra latency, 
but for small interleaver and coding depths, this latency is manageable. 
 
Furthermore, it is observed that, when an extra RX antenna is added (at least for the 2 × 2 
case), the different schemes perform in a close range of each other. Moreover, the average 
performance is improved due to the extra antenna and diversity gain. For some symmetric 
MIMO schemes with a high constellation order this is shown to be a potential solution that 
shifts the required SNR to practical values and, as a result, relaxes the transceiver design. 
Other ways to improve the performance and to get closer to the outage PER may be found 
in more advanced code design that also benefits from the transmit diversity. 
 
Based on above arguments, we can conclude that coded SDM OFDM is a promising 
scheme that combines the data rate enhancement and flexibility of SDM with the relatively 
high spectral efficiency and the robustness against frequency-selective fading and 
narrowband interference of OFDM. Within this concept, however, there is still room for 
improvement, namely, at a PER of 1% we observed a loss of 4.8 dB compared to the 
outage PER. 
 





 

6  
 

Implementation of a MIMO OFDM WLAN System 

6.1 Introduction 
 
In the previous chapters, in the analyses and evaluations we performed on MIMO 
(OFDM), we assumed perfect time and frequency synchronisation between the transmitter 
and receiver, and perfect knowledge of the channel, the packetlength, and data rate at the 
receiver. This is justified when the goal is to, e.g., compare and evaluate MIMO algorithms 
in controllable and idealised scenarios. When working towards practical implementations, 
we cannot make above assumptions anymore, but we have to deal with all sorts of 
impairments. 
 
In this chapter, we will describe how these impairments can be tackled in practical 
applications of MIMO OFDM in the WLAN context. In order to restrict the solution space, 
we note that one of the key criteria for success of next generations of existing wireless 
communication products is coexistence and, maybe even more important, backwards 
compatibility with the current products. Hence, in order to introduce MIMO as an 
extension to a SISO product or standard, the definition of fallback mechanisms is essential. 
This compliance with existing and upcoming products or standards puts extra constraints 
on the TX signal format. 
 
One of the current high data rate standards for WLAN is IEEE 802.11a. Since it is based 
on OFDM, it seems a perfect test case to apply the techniques described in the previous 
chapter. Keeping backwards compatibility in mind, we choose to follow the IEEE 802.11a 
TX signal format as closely as possible. 
 
The basic Medium Access Control (MAC) protocol defined in the IEEE 802.11 standard 
(which also applies to IEEE 802.11a) is based on the unscheduled packet-switched 
principle. This means that there is no dedicated communication channel set up between the 
transmitter and receiver (i.e., circuit-switched), but the transmitter sends data on a packet-
by-packet basis. In other words, WLAN is a packet-switched system with a random access 
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protocol. Consequently, the receiver does not have any a priori knowledge about packet-
arrival times. The random nature of the arrival times and the high data rates require the 
synchronisation to be completed shortly after the start of the reception of a packet. To 
facilitate "quick" synchronisation, the data packet is preceded with a known sequence (i.e., 
the preamble). The preamble is carefully designed to provide enough information for a 
good start-of-packet detection, Automatic Gain Control (AGC), time synchronisation, 
frequency synchronisation, and channel estimation. Once these tasks have been performed, 
the payload can be processed. 
 
In practical implementations, these synchronisation tasks are essential since they tackle 
system impairments, such as frequency offset and timing offset. Other system impairments 
that have influence on the performance are, e.g., phase noise, IQ imbalance, and DC offset 
([143]). In the pervious chapter, the performance of various MIMO OFDM algorithms was 
compared (based on IEEE 802.11a parameters), however, impairments were not taken into 
account. Therefore, to validate MIMO OFDM algorithms in practice, a 3 × 3 test system 
was built within Agere Systems, The Netherlands.  
 
In this chapter, data rate measurements are performed with this 3 × 3 test system. To tackle 
the impairments, frequency and time synchronisation, channel estimation, and phase 
tracking are implemented. Moreover, a specific receiver design based on the sampled-IF 
principle reduces the influence of IQ imbalance and DC offset. Successful transmissions 
up to 162 Mbps in the license-free 5.x GHz band are demonstrated in a typical office 
environment. 
 
The organisation of this chapter is as follows.  In Section 6.2, a description is given of the 
processing that is required for synchronisation of a MIMO OFDM system. The proposed 
preamble is an extension of the IEEE 802.11a preamble. Section 6.3 gives a description of 
the test system that has been built to evaluate the performance of different MIMO 
algorithms and synchronisation algorithms in real-life environments. The results of 
measurements that are performed are provided in Section 6.4. The chapter ends with 
conclusions in Section 6.5. 
 

6.2 Implementation Description 
 

6.2.1 Motivation 
 
As already mentioned in the introductory section, synchronisation is an essential task for 
any digital communication system and required for reliable reception of the transmitted 
data. From the perspective of physical layer design, proper synchronisation algorithms are 
crucial to build a successful product. Therefore, for a potential application of MIMO 
OFDM in the WLAN context, it is important to examine the necessary changes to (e.g.) the 
IEEE 802.11a preamble, time and frequency synchronisation, channel estimation, 
synchronisation tracking and detection. The next subsections will give an overview of 
these necessary changes. A short description of the IEEE 802.11a preamble is provided in 
the next subsection. 
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6.2.2 The IEEE 802.11a Preamble 
 
Since the IEEE 802.11a standard is based on the unscheduled packet-switched principle, 
the receiver needs to perform a start-of-packet detection (where the start of a packet is 
defined by the start of the preamble), Automatic Gain Control (AGC), time 
synchronisation, frequency synchronisation, and channel estimation before the actual data 
bits can be decoded. To that end, the standard defines a preamble by which above tasks can 
be performed. The preamble structure is shown in Figure 6-1. 
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Retrieval of Data Rate 
and Packet Length 
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Figure 6-1: IEEE 802.11a preamble. 

 
The first part of the preamble consists of 10 identical Short Training (ST) symbols with a 
duration of 800 ns each. These ST symbols are produced as follows. Only subcarriers with 
an index that is a multiple of 4 are bearing a predefined nonzero value ([57]). Hence, of all 
possible subcarrier numbers from –26 to 26, only the subset {–24, –20, –16, –12, –8, –4, 4, 
8, 12, 16, 20, 24} is used ([126]). Taking the 64-point IFFT of the result leads to 64 
samples containing 4 ST symbols. The ST symbols are used to perform Frame Detection 
(FD), AGC, and coarse frequency-offset estimation. 
 
Firstly, the receiver is set up in listing mode, which means that it scans for the start of a 
packet using a Frame Detection (FD) / Coarse Timing (CT) algorithm. For IEEE 802.11a, 
the receiver can perform a running correlation between two subsequent intervals of 800 ns, 
which at a sampling rate of 20 MHz consist of 16 samples each. When a packet is received, 
the outcome of the correlator will go up and stay high for the duration of the ST symbols. 
In [102], three different criteria to determine the start of a packet (and thus the detection of 
a frame) based on the correlator output are compared: 
 

1. The Maximum-Correlation criterion, proposed in [67]. In this criterion, the start of 
a frame is, based on a fixed time offset, directly related to the maximum of the 
magnitude of the correlation between two successive ST symbols. Usually, this 
criterion is combined with a threshold that triggers the search for the maximum and 
a search window that limits the search for the maximum to the length of the 
window. 

 
2. The Schmidl criterion, proposed in [105]. To overcome numerical-range issues of 

the Maximum-Correlation criterion, Schmidl proposed a criterion in which the 
squared magnitude of the correlation between two successive ST symbols is 
normalised by the squared power of the received sequence windowed by a sliding 
window equivalent to the length of one ST symbol. The maximum of the result 
directly relates to the start of the frame. 

 
3. The Maximum-Normalised-Correlation criterion, proposed in [81]. This criterion is 

a modification of the Schmidl criterion. The squared magnitude of the correlation 
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between two successive ST symbols is multiplied by four and normalised by the 
squared power of the received sequence windowed by a slicing window equivalent 
to two times the length of a ST symbol. And, again, its maximum indicates the start 
of a frame (after correction with a fixed time offset). 

 
In [102], it was concluded that for high SNRs, the Schmidl criterion and Maximum-
Normalised-Correlation (MNC) criterion perform the best. Depending on the performance 
measure, the MNC criterion in general was shown to be the better of the two. 
 
Their relatively large number of repetitions allows multiple power measurements, obtained 
by correlating two successive ST symbols, to stepwise converge to the right AGC setting. 
 
Furthermore, the short symbol period makes it possible to do coarse frequency offset 
estimation with a large unambiguous range. The repetition of ST symbols, namely, allows 
for estimation of the phase rotation between time-delayed versions of the same symbol, 
which is a measure for the frequency offset ([79]). For a repetitive signal with duration T, 
the range of the tolerable frequency offset, which is also referred to as lock-in range, is 
equal to [–1/(2T), 1/(2T)], as frequency offsets outside this range result in a phase change 
exceeding [–π,π] form one symbol to another, leading to ambiguity. Hence, with the ST 
symbols, absolute frequency offsets up to 625 kHz can be estimated, which is two times 
the subcarrier spacing (see Table 5-1). 
 
The middle part of the preamble consists of two Long Training (LT) symbols. A single LT 
symbol is constructed by modulating the 52 subcarriers with the same subcarrier index as 
in a normal data symbol by known QPSK symbols and taking the 64-point IFFT. The two 
LT symbols are preceded by a Long Guard Interval (LGI) of 1.6 µs containing a copy of 
the last 1.6 µs of the LT symbol (see Figure 6-1). The repetition is used to perform fine 
frequency offset estimation ([102]), with a limited absolute frequency range up to 156.25 
kHz. The advantage over the coarse frequency offset estimation is that in the fine 
frequency offset estimation the repetition period consists of more samples resulting in a 
more accurate (i.e., fine) estimate of the frequency offset. Furthermore, the two LT 
symbols are used for fine time synchronisation and channel estimation in order to obtain a 
reference amplitude and phase per subcarrier for doing coherent demodulation. 
 
In order to deal with phase noise, the data in the payload of the packet is extended with 4 
known pilot symbols per OFDM symbol. Based on the estimated phase offset of these pilot 
tones, the receiver can track the reference phase. The pilot symbols are scrambled by a 
length 127 pseudo-noise sequence ([57]) to avoid spectral lines exceeding the average 
power density of the OFDM spectrum ([126]). 
 
A schematic representation of above described preamble and pilot tones is shown by the 
time-frequency structure of an OFDM packet in Figure 6-2 ([126]), where all known 
training values are marked grey. It clearly illustrates how the packet starts with 10 ST 
symbols, using only 12 subcarriers, followed by the LT sequence and OFDM data 
symbols, with each OFDM data symbol containing four known pilot subcarriers. 
 
The last part of the preamble is the signal field, which contains information about the data 
rate and packetlength. This information is encoded in 16 binary bits. There is also a 
reserved bit and a parity check bit. These 18 bits are padded with 6 zeros (to allow the 
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Viterbi decoder to return to the zero state) and encoded with the convolutional encoder 
with coding rate ½. The resulting sequence is then interleaved and used to modulate the 48 
data subcarriers using BPSK. Hence, the signal field is always sent at the lowest possible 
rate, namely 6 Mbps. After the 4 pilot symbols are added, the IFFT is taken of the result to 
obtain the time domain representation of the signal field. Finally, of course, a cyclic prefix 
is added as guard interval. 
 
Further information on constellation sizes, coding schemes, etc., can be found in 
Subsection 5.8.1. 
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Figure 6-2: Time-frequency structure of an OFDM packet. The grey subcarriers 

contain known training values. 
 

6.2.3 MIMO OFDM Preamble 
 
In this subsection, the IEEE 802.11a preamble design as described in the previous 
subsection is extended to be able to perform synchronisation tasks in the MIMO OFDM 
case, while keeping the possibility to fall back to IEEE 802.11a rates (see also [135]). We 
will assume that the receiver gains (per branch) are already set by the AGC. Since the 
AGC for a MIMO system does not differ significantly from the SISO case, it will not be 
treated here.  
 
The main difference between a SISO preamble and a MIMO preamble is that the latter 
should be designed such that it allows for estimation of all MIMO channel elements. In 
[14], it was shown that, in order to achieve the same accuracy per MIMO channel element 
as for the SISO case, the length of the training sequence must grow linearly with the 
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number of TX antennas. Once the MIMO channel is estimated, the MIMO processing can 
separate the signal components originating from the different transmit antennas. 
 
To estimate the MIMO channel, it is important that the subchannels from the different TX 
antennas to every RX antenna can be uniquely identified. To achieve that it is shown in 
[14] that the preambles on the different TX antennas should be orthogonal and time-shift 
orthogonal, for at least the channel impulse response length. We have chosen for time 
orthogonality as shown in Figure 6-3. 
 

 

Data LGI LT LT GI 

Data LGI LT LT GI 

time (samples)0 Ntrain 2Ntrain 

TX1 

TX2 

Nc Nc 2Ng 

 
Figure 6-3: Concept of a time orthogonal preamble for a MIMO configuration with 

two transmit antennas.  
 
Note that we ignored the Signal Field, since (for now) we will assume that both the 
transmitter and receiver know the data rate and packetlength. To include the Signal Field 
and maintain backwards compatibility, one could choose to place it between the LT 
symbols of TX1 and TX2, and use the reserved bit to indicate that the current transmission 
is a MIMO transmission. 
 
To perform frequency offset estimation, a periodicity in the preamble is desired as 
explained in the previous subsection. Therefore, the proposed preamble consists of a 
concatenation of two identical training sequences per TX antenna. 
 
Furthermore, to make the channel estimation less vulnerable to ISI, a LGI by means of a 
CP of length 2Ng is added. Altogether, this results in a preamble as depicted in Figure 6-3 
for a 2 × 2 system. Following the IEEE 802.11a standard, the training sequence is chosen 
to be the standard's long training symbol, with Ng = 16 and Nc = 64 ([57]), resulting in a 
non-zero part per TX antenna of Ntrain = 2Ng + 2Nc samples. In the remainder of this 
chapter, we will denote the signal on the i-th subcarrier of the long training symbol by c(i). 
 
Note that since the total length of the proposed preamble grows linearly with Nt, it is not 
highly efficient. More efficient channel training sequences for MIMO OFDM are proposed 
in [14]. It is claimed that training sequences for the different transmit antennas are optimal 
if they are orthogonal, as well as shift orthogonal over the sampling interval 
{–L + 1, …, L – 1}. Since the impulse response length L is not known in advance, the 
simplest implementation would be to choose a fixed orthogonality interval. If the shift 
orthogonality is not satisfied, however, training following the design rules of [14] becomes 
unstable, leading to undesirable performance degradation. Therefore, stable but efficient 
channel estimation algorithms remain a topic for further research. 
 
Finally, note that the preamble of Figure 6-3 does not contain ST symbols. In general, we 
could say that when it is assumed that the TX antennas are co-located and that the RX 
antennas are co-located, then the FD and coarse frequency offset estimation can be done in 
the same way as for the SISO case. The best thing to do is to send the SISO ST symbols on 
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all TX antennas simultaneously. Note that in an environment that results in high spatial 
correlation this might result in a beamforming kind of transmission. Therefore, either the 
TX antennas should be designed such that their antenna patterns are as orthogonal as 
possible, or some form of transmit diversity must be applied. Since we, however, assume 
that the AGC is already set, in the next subsections the ST symbols are discarded and the 
Frame Detection is performed on the LT symbols. When one wants to include the ST 
symbols to the preamble, the adaptation of the proposed algorithms of the next subsections 
is straightforward. 
 

6.2.4 Time Synchronisation 
 
Frame Detection / Coarse Timing 
 
The task of FD is to identify the preamble in order to detect a packet arrival. This preamble 
detection algorithm can also be used as a CT algorithm, since it inherently provides a 
rough estimate of the starting point of the packet. In literature different data-aided FD 
algorithms have been proposed for OFDM ([67, 81, 105]). A simple MIMO extension of 
Schmidl's algorithm ([105]) was proposed in [78]. All these algorithms are based on the 
correlation between the repeated symbols constituting the preamble. 
 
Based on the assumption at the end of Subsection 6.2.3 that we will discard the ST 
symbols, the next equations are derived from the preamble design of Figure 6-3. We define 
the complex correlation Λ between two subsequently received frames of Nc samples on the 
Nr receive antennas as 
 

 ( ) ( ) ( ) ( ) ( )
( )( )

∑ ∑ ∑
−−= −−= =

−=−=Λ
τ

τ

τ

τ

τ
1 1 1

*

c c

r

Nn Nn

N

q
qcqc

H nrNnrnNn rr . (6.1) 

 
where rq(n) is the n-th sample of the received signal on antenna q. The sum of the power of 
Nc subsequently received samples on the Nr receive antennas together, denoted by P, is 
defined as 
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Here we propose to use the Maximum-Normalised-Correlation (MNC) criterion for FD, 
which was proposed in [81] for a SISO OFDM system and shown to perform better than 
techniques proposed in [67] and [105] (see also Subsection 6.2.2). In the MIMO extension 
of the MNC frame detection algorithm the estimated start of the data packet, i.e. the end of 
the preamble, is given by 
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where τp = τ – (Nt – p)Ntrain to consider the offset of Ntrain per TX branch (see Figure 6-3). 
To avoid a false detection, i.e. a detection of a packet when none is present, a threshold 
should be set which triggers the above algorithm. 
 
Symbol Timing 
 
The symbol timing in an OFDM system decides where to place the start of the FFT 
window within the OFDM symbol. Although an OFDM system exhibits a Guard Interval 
(GI), making it somewhat robust against timing offsets, non-optimal symbol timing will 
cause more ISI and ICI in delay spread environments. This will result in performance 
degradation. 
 
The symbol timing proposed here is designed to minimise the amount of ISI and ICI that is 
generated in the system and is an extension of the technique proposed for SISO OFDM in 
[126, pp. 88-92]. Since it relies on the knowledge of the Channel Impulse Responses 
(CIRs), their powers are estimated by correlating the received signals with the known 
training sequence (in time domain, thus after applying the IFFT on c(i)) 
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Subsequently the powers of the NtNr impulse response estimates are summed. Note that the 
estimates of the powers of the CIRs corresponding to the Nt transmitters are spaced Ntrain 
samples apart in ηq, and that ηq holds two estimates per TX spaced Nc samples apart, 
caused by the repetition in the preamble. The sum of the powers is window integrated over 
the length of the Guard Interval of the OFDM symbol Ng. The joint symbol timing for the 
whole MIMO receiver τest, i.e., a measure for the start of the payload, is then found by 
searching the maximum of the window integral: 
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Note that, to reduce the amount of computations for the symbol timing, a search window 
can be defined based on the coarse timing. This search window should be centred around 
τ = τFD, as determined by (6.3). 
 

6.2.5 Frequency Synchronisation 
 
The frequency synchronisation has to correct for the Frequency Offset (FO) caused by the 
difference in oscillator frequencies at the transmitter and the receiver. We estimate this 
frequency offset and compensate the received signals for it. The frequency offset can be 
estimated using the phase of the complex correlation Λ between the two consecutive 
received training symbols (defined in (6.1)), as was shown for a SISO OFDM system by 
Moose in [79] and further worked out in [105]. A simple MIMO extension of Moose's 
algorithm was proposed in [78]. Here it is assumed that all transmit/receive branches of 
one MIMO transmitter/receiver use the same oscillator, which is a valid assumption if the 
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different transmit/receive branches are co-located. The best instant to estimate this 
frequency offset is at timing instant τ = τFD. The estimated frequency offset ∆fest is then 
given by 
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where θest denotes the phase of the summation of the complex correlations Λ of the training 
symbols originating from the different transmitters, fs equals the sample frequency, Tc = 
Nc/fs stands for the training symbol duration, and ∠(.) denotes the angle (in rad) of the 
corresponding argument. The maximum estimated frequency offset is limited, since the 
angle θest that can be estimated without phase ambiguity is limited to θmax = ±π. This 
relates to a maximum frequency offset of |∆fmax| = |θmax|fs/(2πNc) = fs/(2Nc), which equals 
half the subcarrier spacing. A larger range can be achieved by first performing a coarse 
frequency offset estimation using shorter sequences, e.g., the ST symbols as defined in the 
IEEE 802.11a standard ([57], Subsection 6.2.2). 
 
As an accuracy measure of the estimator we consider the normalised variance of the 
estimator in an AWGN channel as was derived in [79] for the SISO estimator. The 
normalised variance of the MIMO estimator is derived in [103] and given by 
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where ρ denotes the SNR per receive antenna, ∆f the actual frequency offset, and ∆F = 
fs/Nc the subcarrier spacing. It can be shown that the variance of the estimator equals the 
Mean Square Error (MSE), since the estimator is unbiased. It is clear from (6.7) that the 
accuracy increases linearly with the number of receive antennas Nr. Note that the Cramér-
Rao lower bound is equal to this theoretical value of the variance, as was already 
concluded for the SISO version in [105]. 
 
In Figure 6-4 the MSE of the FO estimation is depicted as function of the average SNR per 
receive antenna. The theoretical value from (6.7) is shown together with simulation results 
averaged over 100,000 channel realisations for both AWGN channels and Rayleigh faded 
channels with an exponentially decaying PDP having different values of rms delay spread. 
The figure shows the results for the SISO and 3 × 3 configuration. It is clear that the 
theoretical value is a good estimate of the MSE for high SNR values, but underestimates 
the MSE compared to simulation results for low SNR.  In case of AWGN, we see an 
improvement of 4.8 dB in performance going from a 1 × 1 to a 3 × 3 configuration, as 
expected from (6.7). 
 
The simulations with multipath channels show a degradation in performance with respect 
to the theoretical and the simulated AWGN case. The degradation is the worst for the flat 
fading case and decreases when the rms delay spread increases. This is explained by the 
frequency diversity introduced by the delay-spread channel. The degradation, however, is 
much smaller for the 3 × 3 case than the SISO case. This shows that the frequency-offset 
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estimation in MIMO systems is more robust under different fading conditions, which can 
be explained by the space diversity introduced by the multiple antennas. 
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Figure 6-4: Mean Square Error of the frequency offset estimate for a 1 × 1 (solid 

lines) and a 3 × 3 (dashed lines) system from theory and simulations with AWGN and 
multipath channels. 

 

6.2.6 Channel Estimation 
 
When time synchronisation is performed at the receiver and after the received signals are 
corrected for the frequency offset, the channel can be estimated using the known training 
symbols within the preamble. When the timing is performed correctly, we know which 
received samples correspond to the training part. More precisely, we know exactly which 
part of the received preamble is sent by transmit antenna p (see Figure 6-3). Therefore, in 
the analysis of this subsection, we will omit the MIMO OFDM symbol index for brevity. 
Let us denote the Fourier transform of the symbol received on antenna q that corresponds 
to the training symbol from transmitter p by 
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Recall that c(i) denotes the training signal on the i-th subcarrier. Then, rewriting the signal 
model of Section 5.4, it can be shown that 
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where D = diag(c), with c = (c(0), …, c(Nc – 1))T. Furthermore, n'qp represents the 
frequency domain additive noise at the q-th receiver branch. 
 
Now the estimates of the channel coefficients can be obtained by 
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Since D is diagonal and the IEEE 802.11a training symbol has a constant amplitude of 1.0 
over the (used) subcarriers ([57]), the processing of (6.10) can be simplified to 
 
 p

q
H

qp '' est, xDh = . (6.11) 
 
Note that, because the proposed preamble contains a repetition of two identical training 
symbols per TX, we can improve the accuracy of the channel estimate by averaging over 
the two corresponding received symbols before the above described processing is 
performed. Furthermore, note that performing the channel estimation in the time domain 
has a potential higher performance, since in the time domain only an impulse response 
with a length not much higher than Ng has to be estimated and, because Ng < Nc, the 
available observations are effectively used to estimate a smaller number of values, i.e., the 
channel impulse response ([52]). On the other hand, we could also apply an interpolation 
filter on the result of (6.10) to average the estimation noise over frequency domain 
estimates and obtain a higher accuracy. Either of these techniques, however, is more 
sensitive to high timing offsets and high delay spreads due to extra constraints that are 
placed on, e.g., the observation length. Therefore, the more robust implementation of 
(6.10) has been chosen. 
 

6.2.7 Synchronisation Tracking using Pilot Subcarriers 
 
As described in the above sections, the processing of the preamble takes care of the initial 
synchronisation of the MIMO OFDM receiver. It is, however, likely that the frequency 
offset will vary during the reception of the packet due to, e.g., Phase Noise (PN), making 
solely initial frequency synchronisation insufficient. The observed PN at baseband is the 
residual error of the phase tracking of the RF oscillator in combination with a Phase 
Locked Loop (PLL). From [9] it is clear that PN causes a common phase turn for all 
subcarriers, called Common Phase Error (CPE), and a Gaussian like ICI term. Since the 
CPE is equal for all subcarriers, it can be estimated and corrected for. An initial estimation 
is done inherently by the channel estimation. The CPE, however, changes on a symbol-by-
symbol basis, making this initial correction insufficient. 
 
It is, therefore, necessary to estimate and correct the rotation of the received constellation 
points caused by the FO and CPE on a symbol-by-symbol basis. A convenient method is to 
use pilot subcarriers, i.e. subcarriers containing known data, which are inserted into the 
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data symbols. The rotation of these known pilot symbols, observed at the receiver, is a 
good measure for the CPE. An estimate of the rotation for the k-th symbol is given by 
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where ℘ denotes the set of pilot subcarrier numbers of the Np pilots per TX antenna and 
sp,est(i,k) is the estimate, before slicing, of the transmitted signal sp(i,k). This rotation can 
now be corrected for at the receiver by multiplying the complex values of all subcarriers of 
the k-th symbol by exp(–jϑ(k)). 
 

6.3 The TRIO Test System 
 

6.3.1 Introduction 
 
In order to validate the principle of MIMO (OFDM) in practice, a MIMO test system was 
developed and built within Agere Systems, The Netherlands ([27, 128, 136, 135]). More 
concretely, this test system was developed with the following main goals: 1) to verify the 
theoretical MIMO propagation studies and 2) to serve as a platform for MIMO algorithm 
development. The system exploits the spatial dimension through three transmit branches 
and three receive branches and, hence, forms a 3 × 3 system. It is called the TRIO test 
system, which stands for TRiple-Input-Output test system. 
 
With the test system, transmissions over (wideband) MIMO channels can be performed, 
e.g., for algorithm selection and development. Additionally, measurements can be used to 
verify propagation studies. As a platform for algorithm development, different approaches 
for MIMO decoding and synchronisation can be explored quickly by keeping the proces-
sing off-line to avoid implementation problems. Once a promising algorithm is found, 
efforts could be made to implement it in the test system to demonstrate the algorithm in 
real-time. 
 
In the next subsections, a general description of the test system is given as well as more 
detailed descriptions of the specific transmitter and receiver hardware. 
 

6.3.2 Configuration 
 
To have enough flexibility in achieving the goals brought up above, the test system was 
composed with in-house developed components. To access this dedicated hardware, two 
Personal Computers (PCs) are used as TX and RX platform. Each PC contains three 
boards, where every single board represents a transmitter or receiver branch, resulting in a 
3 × 3 MIMO system as schematically depicted in Figure 6-5. Every board consists of a 
baseband part, an Intermediate Frequency (IF) part and a Radio Frequency (RF) front-end 
based on a 5.x GHz GaAs radio chip. The test system operates in the 5-GHz band, and is 
capable of transmitting broadband signals with a bandwidth up to 20 MHz, which gives a 
time resolution of 50 ns. To a large extent the system design corresponds with the IEEE 



6.3  The TRIO Test System 173 

802.11a standard ([57]). Taking into account the guard subcarriers, i.e. the zero subcarriers 
on the edges of the spectrum, the –3 dB bandwidth is 16.56 MHz. 
 
For the moment, the TX and RX platforms are frame synchronised with a synchronisation 
cable, meaning the RX starts receiving when the TX triggers it. When the test system is 
upgraded in the future synchronisation processing will be implemented at the receiver and 
synchronisation is performed by transmitting a known preamble or training sequence (see 
Section 6.2). This makes the synchronisation cable redundant. 
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Figure 6-5: Diagram of the TRIO test system. 

 
Both PCs are equipped with wireless LAN cards so that they can be accessed remotely. 
Additionally, for both PCs a program with a DCOM interface is developed and installed. 
This enables the user to operate the TRIO platform remotely via a Local Area Network. All 
the remote software used to compose transmit sequences, to operate the test system, and to 
perform various analyses/measurements is designed in MATLAB. For instance, by 
transmitting multiple packets, BER/PER tests can be performed in order to evaluate 
different MIMO algorithms in real-life communication channels. 
 
Both the transmitter and receiver hardware platform are stalled on trolleys and connected 
to battery packs (UPS's). This enables the system to be moved freely and to operate at 
every location without the continuous need for external power supplies. Pictures of the 
receiver equipment are given in Figure 6-6. 
 

6.3.3 Matching Transmitter and Receiver Hardware 
 
The baseband processing is built around two Field Programmable Gate Arrays (FPGAs) 
per board with a possible extension of a third FPGA. In Figure 6-7 a schematic 
representation of a baseband board is presented. The FPGAs that are used are Xilinx Virtex 
800's. The FPGAs can be reprogrammed and/or accessed via the ISA bus of the PCs very 
easily, providing a flexible baseband solution. The baseband boards are capable to both 
transmit and receive, while (currently) the IF and RF part are only set up to transmit or 
receive, respectively, for the TX and RX platform. Hence, at the moment, the 
communication stream is one way only. 
 



174 Chapter 6  Implementation of a MIMO OFDM WLAN System 

Figure 6-6: Receiver equipment, built around a PC with three receiver boards (i.e., 
the three receiver branches). 
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Figure 6-7: Schematic representation of a TRIO baseband board. 

 
As mentioned before, the FPGAs provide a flexible baseband solution. It is, for instance, 
possible to load the FPGAs with a real-time implementation of the baseband processing. In 
this way, the boards can run stand-alone and real-time. Moreover, if they are connected to 
a Medium Access Control (MAC) board using the MAC connectors (denoted by "MAC c" 
in Figure 6-7), a complete protocol can be tested. 
 
To be able to "quickly" compare and evaluate different algorithms, however, we make use 
of the possibility to program the FPGAs as memory banks and perform the necessary 
processing off-line. At the transmitter, waveforms can be loaded into and sent from the 
memory banks and they can be recorded at the receiver. These recorded data can then be 
processed off-line by software (so not in real-time) to not only compare different MIMO 
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algorithms, but also calibrate the system, perform channel measurements, perform capacity 
analysis, etc.  
 
The RS 485 connector that is shown in Figure 6-7 is used (for the moment) as an interface 
between the TX and RX to do the frame synchronisation that is done per cable for the 
moment. 
 
The antennas used in the system are ASCOM MBA-5, 5 GHz Miniature Broadband 
antennas. They radiate (in azimuth) a dual-half-plane wideband pattern and are preliminary 
designed for wireless LAN applications in the 5 GHz band. Information regarding the 
bandwidth and radiation pattern can be found in Appendix B.1. The antennas are mounted 
on a linear wooden rail that allows for gradual altering of the antenna spacing. 
 

6.3.4 Transmitter Specific Hardware 
 
The transmitter sends signals at zero-IF, meaning that it sends baseband signals centred 
around 0 Hz. To transmit such a signal, an in-phase (I) and quadrature (Q) part must be 
available, i.e., the baseband signal is complex and its real and imaginary parts are needed 
for further processing. The I and Q signals are converted to the analogue domain by 10-bit 
Digital-to-Analogue Converters (DACs) and after filtering sent to the IF and RF stages. At 
these stages the synthesisers (steered by local oscillators (LOs)) up-convert the signals to 
IF, 1.489 GHz, and subsequently to the RF carrier frequency, 5.150 GHz, and then the 
signals are fed to the TX antennas by low-loss coaxial cables. A block diagram of the 
components of baseband to IF stage is presented in Figure B-4 of Appendix B.2. The RF 
signal is amplified by power amplifiers (PAs), which have a maximum gain of 22 dB, to 
extend the range of the system. The output power of a transmitter is set to 15 dBm. This 
corresponds to about 32 mW. The cables that connect the transmitters with the antennas 
are 1 metre long and have a loss of 2 dB/m. Assuming no antenna loss, the antennas thus 
transmit with 13 dBm, or about 20 mW. 
 
Per branch, the FPGAs are programmed as two (I and Q) 4096 10-bit word memory banks. 
Furthermore, the sampling rate at TX is set to 40 MHz. With respect to the baseband 
sampling rate as defined by the IEEE 802.11a standard, namely 20 MHz ([57]), this means 
oversampling by a factor of 2. So using the principle of oversampling, effectively, the 
transmitter can send 2048 words at 20 MHz simultaneously per branch. Since an IEEE 
802.11a OFDM symbol consists of 80 words, each buffer can contain a maximum of 25 
OFDM symbols. 
 

6.3.5 Receiver Specific Hardware 
 
At the receiver, the received signals are down-converted to low-IF signals, meaning that 
the baseband board gets a signal that is centred around a low Intermediate Frequency. For 
the TRIO system it is chosen to be 15 MHz. The RF signal is first down-converted from 
5.150 GHz to 1.489 GHz and subsequently a 1.474 GHz LO converts it down to 15 MHz. 
The signals are then sampled and converted to the digital domain by 10-bit Analogue-to-
Digital converters. The down-conversion to baseband is done off-line in the digital domain. 
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The components for the conversion of IF to low-IF are sketched in the block diagram in 
Figure B-5 of Appendix B.2.  
 
The advantage of this generally called sampled-IF principle is that the DC-component can 
be easily filtered out and that hardly any IQ imbalance is introduced. The baseband 
transmitter, however, is sending at zero-IF, so IQ mismatches might occur, but since this 
then only happens at one side of the link, namely at TX, it can easily be calibrated out. In 
the memory banks of a receiver branches 8192 10-bit words can be stored. The sample rate 
of the ADC is 60 MHz. After the digital down conversion, the equivalence of the memory 
size is 2730 words at 20 MHz sampling rate. 
 
Each receiver branch is also equipped with a Low Noise Amplifier (LNA) and an 
Automatic Gain Control (AGC). Depending on the field strength on the receive antennas 
the LNAs can be switched on or off. They have a gain of 23 dB and a noise figure of 1.5 
dB. The AGCs have an attenuation range of 1 to 31 dB. An LNA (that can be switched on 
and off) in combination with an AGC allows the system to exploit the full resolution of the 
ADC for a wide range of field strengths at the receive antennas, being the dynamic range 
of the system. 
 

6.4 Measurements 
 
Measurements with the above described test system were done in a wing on the third floor 
of the Agere Systems building in Nieuwegein, The Netherlands, which can be regarded as 
a typical office environment. The wing is 42 m × 12.7 m and its floor plan is shown in 
Figure 6-8. The inner walls of the wing are modular walls, while the rest of the walls and 
floors consists of concrete. Besides the walls, the desks and metal cupboards are depicted. 
Furthermore, the RX and 9 different TX positions and orientations that were used for the 
measurements are shown. The antenna spacing was fixed at two wavelengths. The average 
SNR per RX antenna and the rms delay spread that we measured per location are given in 
Table 6-1. These values were measured at baseband level and, thus, include system 
influences. This means the estimated rms delay spread includes the influence of filters at 
both transmitter and receiver. Since the preamble for 3 TX antennas, as logic extension of 
the preamble shown in Figure 6-3, consumes 6 OFDM symbol lengths, the remaining 
memory of the transmitter has a storage capacity of 19 MIMO OFDM data symbols which 
we always fully exploited, leading to different packetlengths for different data rates. The 
tested data rates and corresponding packetlengths, i.e. the number of information bits, are 
given in Table 6-2. To obtain the average performance, 1000 packets were transmitted per 
rate. We applied per-antenna coding at the transmitter and the well-performing PAC 
MMSE with SIC algorithm introduced in Subsection 5.7.3 as receiving scheme. The BER 
and PER performance for different locations and different rates are depicted in Figure 6-9, 
Figure 6-10, and Figure 6-11. Note that for certain rates no performance values are given; 
this corresponds to the fact that at these rates all 1000 packets were received correctly. 
Furthermore, note that the 1 × 1 measurements were only performed for locations 5, 6 and 
7 and were obtained with the same test system by switching off two of the three boards at 
both TX and RX. 
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Figure 6-8: Floor plan of the wing where the measurements were performed, 

including the RX and TX locations and orientations. 
 

Table 6-1: Average SNR per RX antenna and 
rms delay spread versus position. 

Position Average SNR
(dB) 

rms delay spread
(ns) 

1 24 98 
2 24 97 
3 24 100 
4 23 104 
5 25 91 
6 24 100 
7 22 109 
8 14 131 
9 26 100 

 

Table 6-2: Data rates and packetlengths 

Data rate 
(Mbps) 

Antenna
setup 

Modulation Coding
rate 

Packetlength 
(Bytes) 

6 1 × 1 BPSK 1/2 57 
9 1 × 1 BPSK 3/4 85.5 
12 1 × 1 QPSK 1/2 114 
18 1 × 1 QPSK 3/4 171 
24 1 × 1 16-QAM 1/2 228 
36 1 × 1 16-QAM 3/4 342 
48 1 × 1 64-QAM 2/3 456 
54 1 × 1 64-QAM 3/4 513 
18 3 × 3 BPSK 1/2 171 
27 3 × 3 BPSK 3/4 256.5 
36 3 × 3 QPSK 1/2 342 
54 3 × 3 QPSK 3/4 513 
72 3 × 3 16-QAM 1/2 684 
108 3 × 3 16-QAM 3/4 1026 
144 3 × 3 64-QAM 2/3 1368 
162 3 × 3 64-QAM 3/4 1539 
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Figure 6-9: Measurement results of a 3 × 3 system with PAC SIC detection for the TX 

locations 2, 6, 8 and 9. For location 9, the measurements are compared with 
simulations (dotted line), with an average SNR per receive antenna of 26 dB and an 

rms delay spread of 100 ns. 
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Figure 6-10: Measurement results of a 3 × 3 system with PAC SIC detection for the 

TX locations 1, 3, 4, 5 and 7. 
 



6.4  Measurements 179 

24 36 48 54
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

Data rate (Mb/s)
24 36 48 54

10
-3

10
-2

10
-1

10
0

Data rate (Mb/s)
P

E
R

loc. 5
loc. 6
loc. 7

loc. 5
loc. 6
loc. 7

 
Figure 6-11: Measurement results of a 1 × 1 system with PAC SIC detection for the 

TX locations 5, 6 and 7. 
 
In Figure 6-9, Figure 6-10, and Figure 6-11, it can be observed that the performance of the 
3 × 3 measurements is worse than the performance of its 1 × 1 counterpart with 1/3 of the 
data rate. To have a PER of 1%, it can be shown that, in the 1 × 1 case, a rate of 54, 36, and 
24 Mbps can be achieved for locations 5, 6, and 7, respectively. For the 3 × 3 case, these 
rates are respectively 108, 54 and 54 Mbps, resulting in an average data rate enhancement 
of 1.92. For well-conditioned MIMO channels, i.e. channels with i.i.d. channel elements, 
the data rate could theoretically be improved by a factor of 3. Clearly, the measured MIMO 
channels do not provide this improvement. The following arguments can explain this fact: 
firstly, the environment does not provide enough scattering, leading to ill-conditioned 
MIMO channels. Secondly, mutual coupling between the branches at the transmitter and 
the receiver leads to performance degradation. Since our system is not shielded very well, 
as can be seen from Figure 6-6, mutual coupling most likely has a high contribution to the 
observed performance/throughput loss in our case. Finally, system impairments such as RF 
non-linearities and quantisation noise might be an issue, though, in Subsections 6.2.4 and 
6.2.5, and in [103] we observed that MIMO correction algorithms for impairments in 
general perform better than their SISO counterparts. 
  
Next to measurements, simulations were performed to evaluate the Packet Error Rate 
(PER) performance for the 3 × 3 rates 72, 108, 144, and 162 Mbps (see Table 6-2) and to 
compare the results with the measurements results. Location 9 was used for this 
comparison (see Figure 6-8). At this position we observed an rms delay spread of about 
100 ns and an average SNR per RX antenna of 26 dB. These parameters were used in the 
simulations. Furthermore, perfect synchronisation and i.i.d. channel elements were 
assumed and the PER was obtained by averaging over 10,000 packets. The results are 
shown in Figure 6-12. The solid curves are obtained by performing simulations including 
channel estimation based on the preamble design of Figure 6-3. The dashed curve is 
generated assuming perfect CSI at the receiver. 
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Figure 6-12: PER simulation results of PAC SIC for a 1 × 1 and 3 × 3 configuration, 

with perfect CSI at the receiver (dotted line) and with channel estimation (solid lines), 
different data rates, and frequency-selective Rayleigh fading with an exponential 

decaying PDP with 100 ns rms delay spread. 
 
From these simulation results we see that the performance deteriorates going to higher data 
rates and we observe that applying channel estimation results in a loss of more than 4 dB. 
A more advanced channel estimation algorithm might reduce this loss (see Subsections 
6.2.3 and 6.2.6). Furthermore, we note that the 3 × 3 curves fall off faster than the 1 × 1 
curve (of 54 Mbps, 64-QAM, rate 3/4 and a packetlength of 513 bytes), such that at high 
SNRs, most of the higher MIMO rates outperform the SISO 54 Mbps rate, even having 
larger packetlengths. This can be explained by the fact that the MIMO configurations 
benefit not only from the frequency diversity, but also from the spatial diversity. 
 
Taking the simulation results at an SNR of 26 dB, we can evaluate the performance of the 
measurements with the test system for location 9. For different data rates and an rms delay 
spread of 100 ns, the results are depicted in Figure 6-9 by the dotted lines. We clearly see 
that the performance of the test system in a real environment is worse than the performance 
of the idealized simulations. This can most likely be explained by system degradations that 
are not taken into account in the simulations, such as mutual coupling, residual IQ 
imbalance, errors in the frequency offset estimation, phase noise, and/or quantisation. 
Another reason could be the assumption of i.i.d. channel elements in the simulations. 
 

6.5 Conclusions 
 
In this chapter, an overview was given of the (changes in) signal processing, required to 
extend the physical layer of an OFDM system to Multiple-Input Multiple-Output (MIMO) 
OFDM. The signal processing of frame detection, time synchronisation, frequency 
synchronisation, channel estimation, synchronisation tracking using pilot subcarriers and 
MIMO detection algorithms was discussed. As a test case the MIMO extension of the 
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OFDM standard IEEE 802.11a was considered, but the results can be applied more 
generally. The necessary processing was not only evaluated through simulations, but also 
by measurements using a 3 × 3 MIMO test system that was set up in a typical office 
environment. 
 
These error-rate measurements performed with the test setup (with a partly off-line 
implementation of the complete signal processing) showed a slightly worse performance 
than the idealised simulation results. The explanation is that in the simulations, system 
degradations such as phase noise and quantisation as well as propagation effects such as 
ill-conditioned MIMO channels are not taken into account.  
 
Finally, measurements showed that an implementation of a 3 × 3 MIMO OFDM system 
achieves about a two times higher data rate than its 1 × 1 counterpart at a given range. Two 
reasons can be found for not reaching the theoretical tripling of the data rate: firstly, mutual 
coupling between the branches at the transmitter and receiver side. Secondly, the 
maximum data rate enhancement by a factor of 3 can only be achieved in well-conditioned 
MIMO channels, i.e. having i.i.d. channel elements. Thirdly, system impairments such as 
RF non-linearities and quantisation noise could be an issue, though, in Subsections 6.2.4 
and 6.2.5, and in [103] we observed that MIMO correction algorithms for impairments in 
general perform better than their SISO counterparts. 
 
Although some work needs to be done to improve the average performance, in general, it 
can be concluded that the MIMO technology is suitable to extend wireless communication 
standards like IEEE 802.11a to higher data rates. 
 





 

7  
 

Conclusions and Recommendations 

7.1 Conclusions 
 

7.1.1 Main Conclusion and Summary of Objectives 
 
As answer to the demand for ever increasing data rates and augmented mobility, SDM 
OFDM provides an attractive and practical solution for future high-speed indoor wireless 
data communication networks. It combines the data-rate and spectral-efficiency 
enhancements of SDM with the relatively high spectral efficiency and the robustness 
against frequency-selective fading and narrowband interference of OFDM. 
 
Specifically, the proposed coded-SDM detection scheme, based on a non-linear variant of 
the Minimum Mean Squared Error (MMSE) algorithm and named Per-Antenna-Coded 
Successive Interference Cancellation (PAC SIC) (see Subsection 5.7.3), was shown to 
perform close to the optimal performing Maximum Likelihood Detection with soft-
decision output values (SOMLD). PAC SIC, however, has a much lower complexity than 
SOMLD as can be deduced from the complexity comparison of Subsection 4.11.3. This 
high performance and low complexity are achieved at the expense of a manageable 
latency. Through simulations and practical measurements it is shown that by SDM OFDM 
the data rate can be increased by a factor equal to the number of transmit (TX) antennas, 
while for many scenarios also the performance is increased with respect to standard 
OFDM. This performance gain is explained by the fact that, besides the exploitation of 
frequency diversity, also the spatial diversity is exploited. 
 
Moreover, the inherent capability of coded SDM to fallback in coding rate, constellation 
scheme, and/or number of transmit antennas provides a means to deliver a good 
performance in a variety of scenarios. Altogether, these are strong advantages making the 
SDM OFDM combination an attractive solution for, e.g., next generation Wireless Local 
Area Networks (WLANs). 
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More detailed conclusions and results of this dissertation are presented in the next 
subsections. Instead of presenting a chronological summary of the results, which can be 
found anyhow in Section 1.5 and the concluding sections of the other chapters, we will 
discuss the conclusions and results following the objectives stated in the introductory 
chapter. Recalling from Section 1.4, the objectives were: 
 
- get a more fundamental understanding of MIMO, 
- introduce a good and useful wideband MIMO channel model (for indoor 

environments), 
- evaluate and find efficient SDM detection techniques in terms of performance and 

complexity, 
- evaluate these techniques in combination with OFDM, e.g., by performing simulations 

and making use of the proposed wideband MIMO channel model, 
- verify the SDM OFDM combination in real-life channels by means of a test system. 

This also requires tackling of the non-idealities encountered in practical circumstances. 
 
The next subsections highlight what was achieved in this dissertation with respect to each 
of these objectives. 
 

7.1.2 A Fundamental Understanding 
 
A more fundamental understanding of MIMO was obtained by means of an intuitive 
physical interpretation, a unified framework, and a theoretical performance analysis of 
MIMO (in combination with OFDM).  
 
The intuitive physical interpretation of MIMO was presented in Chapter 2. In this chapter, 
we showed how one of the simplest SDM techniques called Zero Forcing (ZF) alters the 
RX antenna array patterns. In free space, i.e., when only the Line-Of-Sight (LOS) 
components are considered, a null is placed in the direction of the unwanted antenna to null 
the "interference", hoping that the wanted antenna is not nulled but properly received. 
When, on the other hand, reflections occur in the environment, the unwanted antenna is 
nulled by a spot instead of a beam. Moreover, the wanted antenna is coincidentally 
positioned in a local maximum, resulting in a maximum separation between the wanted 
and unwanted antenna. This provides an intuitive explanation of the robustness of MIMO 
techniques in rich-scattering environments. Moreover, the ability to effectively separate the 
TX antenna signals in these environments leads to the intuitive explanation why the data 
rate with MIMO can be increased with a factor equal to the number of transmit antennas. 
 
In Section 4.2, we presented a unified framework for MIMO techniques, which we 
extended with OFDM in Section 5.3. By the presentation of an overview of various MIMO 
algorithms we came to the definition of a unified framework. We observed that basically 
all space-time processing techniques (like STC and SDM) can be mapped onto a general 
structure consisting of an encoder, a space-time mapper, and constellation mappers. This 
concept can be extended to the frequency dimension as well. This work provides a more 
fundamental understanding on how to design space-time(-frequency) schemes. Namely, 
based on the unified framework we intuitively think that the best codes should be designed 
such that a representation of an information bit (i.e., by means of the redundancy 
introduced by the encoder) is mapped on as many different fading instants (in time and 
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space (and frequency)) as possible, allowing for detection of this information bit at the 
receiver with a high reliability. For open-loop systems an overall MLD, that searches over 
all possible codewords included in the lattice spanning the entire dimensions, would be the 
best performing scheme. Unfortunately, the complexity of such an exhaustive search grows 
exponentially with the size of the code dimensions. So, the goal is to find attractive and 
effective space-time(-frequency) transmit schemes that allow for simple, low complex, 
high-performing detection schemes at the receiver. 
 
The general structure of a space-time(-frequency) transmitter that follows from the unified 
framework forms a perfect basis for general theoretical performance analysis. We 
performed a theoretical space-frequency error-rate analysis of MIMO OFDM in which we 
also included the effect of spatial fading correlation (see Section 5.6). The main 
observation from this analysis was that the maximum achievable diversity order equals the 
product of the frequency diversity order, the number of TX antennas, and the number of 
RX antennas. The benefit of this analysis is that it can be used to design space-frequency 
coding schemes that perform well for a variety of spatial correlation scenarios. 
Furthermore, we showed that, when the diversity order is high enough (four or more) and 
the SNR is low enough, dedicated space-frequency code-design rules are overruled by the 
established Euclidean distance criterion. As a result, standard Single-Input Single-Output 
(SISO) codes together with some form of spatial and frequency multiplexing may 
outperform Space(-Time)-Frequency codes designed according to dedicated rules (i.e., the 
rank and determinant criteria introduced in [116]). 
 

7.1.3 A Good and Useful Channel Model 
 
The design choices for any communication system are largely constrained by the 
communication channel it experiences. The propagation channel of WLANs is 
characterised by severe multipath because of their primarily indoor exploitation resulting 
in the many reflections of the radio waves on walls and objectives in the environment. Due 
to constructive and destructive combination of these waves the received signal can strongly 
very as function of time, frequency, and/or location. The frequency-selectivity of the 
indoor channel can efficiently be mitigated by OFDM, which essentially splits a wideband 
frequency-selective fading channel into multiple orthogonal narrowband frequency-flat 
fading channels. These narrowband channels can be equalised in a trivial way. Together 
with the robustness and data-rate enhancement of MIMO in rich-scattering environments, 
MIMO OFDM is seen as a very promising solution for next generation WLAN systems. 
 
In order to evaluate the various MIMO OFDM detection algorithms, performance 
simulations are an effective means. Since the characteristics of the MIMO fading channel 
have a strong influence on the system performance, it is of foremost significance to have 
an accurate but useful channel simulation model that takes the key channel characteristics 
into account. To that end, we introduced a wideband MIMO channel model that captures 
the typically large number of channel characteristics into a very few carefully selected ones 
such as multipath fading, propagation loss, rms delay spread, a LOS component, and 
spatial fading correlation (see Chapter 3). 
 
Spatial fading correlation is identified as one of the key channel impairments specific for 
MIMO communications. The MIMO performance substantially degrades for correlation 
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values of over 0.4. Therefore, it is important to also evaluate the performance of MIMO 
algorithms in scenarios with spatial correlation. In general, however, the correlation is 
defined between any pair of MIMO channel elements. In the worst case, this leads for, e.g., 
a 4 × 4 MIMO system to 256 correlation parameters. One can imagine that in this case it is 
cumbersome to include spatial correlation in performance simulations. For cases in which 
the performance is expressed in capacity or error-rate, however, we presented a compact 
representation of the spatial fading correlation, having at most two parameters (see Section 
3.6). This introduced spatial correlation model allows for easy inclusion of spatial 
correlation in MIMO simulations. The strength of the model is that, by ranging the one or 
two parameter(s) from zero to one, all scenarios ranging from totally uncorrelated to fully 
correlated spatial fading can be considered. 
 

7.1.4 Performance and Complexity Evaluation of SDM Algorithms 
 
Of the two basic MIMO techniques STC and SDM, the latter is especially designed to 
exploit the data-rate enhancement capabilities of the MIMO principle. Basically, in SDM 
independent data streams are transmitted on different transmit antennas simultaneously and 
at the same carrier frequency. Although these parallel streams of data are mixed-up in the 
air, when the MIMO channel is well conditioned they can be recovered at the receiver by 
using advanced signal processing algorithms, which usually require multiple receive 
antennas, too, to ensure adequate Bit Error Rate (BER) performance. 
 
A number of such signal processing algorithms were described and evaluated in Chapter 4, 
namely, ZF, MMSE, ZF with SIC, MMSE with SIC, and MLD. Here, they are listed by 
increasing error-rate performance. We programmed these algorithms in MATLAB and did 
a number of performance simulations for different antenna configurations, for various 
constellation sizes, for different channel properties (including spatial correlation and/or a 
LOS component), without and with additional coding. Evaluating the results led to the 
following conclusions. 
 
1. Provided enough diversity in the channel, the diversity order of the SDM algorithms 

based on the linear techniques ZF and MMSE tends towards Nr – Nt + 1, with Nt ≤ Nr,  
where Nt and Nr denote the number of TX and RX antennas, respectively (see Section 
4.6). The diversity order of MLD, however, equals Nr (see Section 4.10). 

 
2. Linked to the previous conclusion, when an extra RX antenna is added to a symmetric 

MIMO configuration, the SDM performance improves significantly, relaxing the 
practical implementation of such systems considerably (see Section 4.11). 

 
3. SDM with outer coding is a powerful concept. In literature it was namely shown that, 

when the number of antennas and diversity potential of the channel are large enough 
and the targeted SNR is low enough, the Euclidean distance criterion may be more 
appropriate than the rank and determinant criteria (see Section 4.2 and the simulation 
results of Subsection 4.11.2). This can be explained by the fact that, when a reasonably 
large diversity gain is provided by frequency, transmit and/or receive diversity, a 
wideband MIMO fading channel converges to a Gaussian channel, provided proper 
encoding is applied across the diversity dimensions. This would indicate that a one-
dimensional code designed for AWGN channels, of which its codewords are properly 
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interleaved across the space and time, may be as effective as a space-time code that 
follows the rank and determinant criteria introduced in [116]. In [148] it was shown 
that this would already be the case when the diversity order is equal to or larger than 
four, which would restrict the domain of interest of space-time coding to architectures 
with only 2–3 antennas. In Subsection 4.11.2, we showed through simulations that 
SDM with a certain outer code outperforms Space-Time Coding (STC) with 
comparable coding strength, for a high enough diversity. 

 
4. The concept of SDM with outer coding is much more flexible than STC, since it has 

the capability to easily fallback in coding rate, constellation scheme, and/or number of 
transmit antennas. Hence, coded SDM is an attractive technique able to deliver a good 
performance in a variety of scenarios. For STC, however, in general a different encoder 
and decoder have to be implemented for every rate. 

 
5. The separation between the encoding process and spatial mapping (or multiplexing) in 

coded SDM allows the receiver to iterate between the spatial demapping and the 
temporal decoding. This processing stems from the turbo decoding principle and is in 
this context called Turbo SDM. Since its performance is very close to the overall 
exhaustive maximum likelihood search, Turbo SDM is an excellent way to get close to 
the outage performance bound (see Section 4.13). 

 
We also evaluated the complexity of the presented SDM algorithms in terms of number of 
additions and number of multiplications. It turned out that the complexity of MLD grows 
exponentially with the number of transmit antennas (Nt). The complexity of the least 
complex scheme, ZF, grows only polynomial with Nt, namely, the complexity of the ZF 
processing during the payload phase is proportional to Nt

3. We can conclude from the 
presented results that the implementation of MIMO schemes (with a low number of 
antennas) is feasible. 
 

7.1.5 SDM OFDM Algorithm Evaluation 
 
As mentioned before, the combination of SDM and OFDM is seen as an attractive and 
practical solution for future high-speed indoor WLANs. This is based on the following 
arguments: 
 
- OFDM (in combination with coding) effectively deals with the frequency-selectivity of 

the indoor channel, it provides a relatively high spectral efficiency, and it offers the 
ability to include a proper guard interval between subsequent OFDM symbols leading 
to sufficient delay spread robustness. Furthermore, when it is combined with coding it 
provides robustness against narrowband interference, 

- the current high-data rate standards of IEEE, namely IEEE 802.11a and g, are based on 
OFDM, so SDM OFDM is a logical extension and offers simple means to also consider 
coexistence and interoperability, 

- the data-rate and spectral-efficiency enhancements of SDM are the highest in rich-
scattered multipath by which the indoor environments are typically characterised, 

- the flexibility of coded SDM to fallback in coding rate, constellation scheme, and/or 
number of transmit antennas. 
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In order to evaluate the performance of (coded) SDM OFDM schemes, we extended the 
narrowband SDM simulation software we used in Chapter 4 with OFDM based on the 
IEEE 802.11a parameters and the in Chapter 3 introduced wideband MIMO channel 
model. Based on the performance simulations we presented in Chapter 5 for different 
antenna configurations, for various constellation sizes, for different rms delay spreads, 
without and with a LOS component, we concluded the following: 
 
1. The diversity order of the SDM algorithms is multiplied by the frequency diversity 

order (see Section 5.6). As a result, SDM OFDM algorithms have a higher robustness, 
since the probability of having a low spatial and frequency diversity is particularly 
small in indoor environments. 

 
2. Based on the additional spatial diversity of SDM, in general, the coded SDM OFDM 

schemes outperform their SISO counterparts, except for the symmetric antenna 
configurations with high constellation orders in scenarios with a delay spread of 250 
ns. Since the lattice containing all possible TX symbols becomes more and more 
complex when going to a higher constellation size and to more transmit antennas, the 
performance particularly suffers from non-orthogonal MIMO channels. As a result, the 
performance penalty for MIMO systems when going to a higher constellation order is 
worse than that for SISO systems. 

 
3. The introduced coded-SDM-OFDM detection scheme based on a non-linear variant of 

the Minimum Mean Squared Error (MMSE) algorithm and named Per-Antenna-Coded 
Successive Interference Cancellation (PAC SIC), see Subsection 5.7.3, achieves 
equivalent PER performances as the complex SOMLD, but the complexity of PAC SIC 
grows only polynomial with the number of TX antennas. The potential disadvantage of 
PAC SIC is that it introduces extra latency, but for small interleaver and coding depths, 
this latency is manageable. 

 
4. Detection schemes, like PAC SIC, designed for the straightforward coded-SDM-

OFDM transmission schemes, based on multiplexing a one-dimensional code over the 
spatial and frequency dimension, still perform at least 7 dB worse than the outage 
performance at the PER of interest: 1%. Note that 2.2 dB of the 7 dB is imposed by the 
OFDM overhead, i.e., the guard subcarriers and guard time. But apparently there is still 
enough room left for improvements, challenging us to find more efficient ways of 
implementing the Euclidean distance criterion. A promising solution may be to 
introduce the turbo processing as described for narrowband MIMO transmissions in 
Section 4.13 to the MIMO OFDM context. Other ways to improve the performance and 
get closer to the outage PER may be found in more advanced code design that also 
benefits from the transmit diversity. 

 
5. When an extra RX antenna is added to a 2 × 2 system, the different SDM OFDM 

detection schemes perform very similarly; their required SNRs to achieve a PER of 1% 
do not differ more than 2.5 dB. An additional effect is that the average performance is 
improved due to the extra diversity gain. For some symmetric MIMO schemes with a 
high constellation order this is shown to be a potential solution to shift the required 
SNR to practical values and, as a result, relaxes the transceiver design. 
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7.1.6 Implementation of a MIMO OFDM WLAN system 
 
For the simulations of Chapter 4 and 5 we idealised the system under investigation, in 
order to focus on the main goal of these chapters, namely, algorithm comparison and 
evaluation. We assumed that system impairments such as frequency offset, timing offset, 
phase noise, IQ imbalance, DC offset, and quantisation noise, were negligible. When 
practical implementation is envisioned, however, the system has to deal with these non-
idealities. Commonly, this is done by performing training and synchronisation. In packet-
switched systems, a preamble (i.e., a piece of known data exceeding the packet) can be 
used to initiate these tasks. Since we were searching for extensions to the IEEE 802.11a 
standard, a number of necessary changes to the 802.11a preamble, together with the 
required processing changes, were proposed in Chapter 6, such that it allows for time and 
frequency synchronisation, channel estimation, and synchronisation tracking in case of 
MIMO OFDM. 
 
To validate the MIMO OFDM concept in practice, including the effect of system 
impairments, a 3 × 3 test system was built within Agere Systems, The Netherlands. With 
this test system, as set of measurements based on IEEE 802.11a parameters was performed 
in a typical office environment. The measurement results led to the following conclusions. 
 
First, the proposed preamble and channel estimation approach result in a performance 
degradation of more than 4 dB compared to the hypothetical case where perfect knowledge 
of the channel was available at the receiver (see Figure 6-12). 
 
Second, the error-rate measurements performed with the test set up (with a – partly off-line 
– implementation of the complete signal processing) showed a slightly worse performance 
than the idealised simulation results (including channel estimation). The explanation is that 
in the simulations, system degradations such as phase noise and quantisation as well as 
propagation effects such as ill-conditioned MIMO channels are not taken into account.  
 
Finally, measurements showed that an implementation of a 3 × 3 MIMO OFDM system 
achieves about a two times higher data rate than its 1 × 1 counterpart at a given range. Two 
reasons can be found for not reaching the theoretical tripling of the data rate: 1) mutual 
coupling between the branches at the transmitter and receiver side and 2) the maximum 
data rate enhancement by a factor of 3 can only be achieved in well-conditioned MIMO 
channels, i.e. having i.i.d. channel elements. 
 
Although there is some room for improvement in the SDM OFDM concept, we can overall 
conclude that SDM OFDM is an attractive and practical solution to extend wireless 
communication systems based on standards such as IEEE 802.11a to higher data rates. 
 

7.2 Recommendations and Open Issues 
 
At the end of this dissertation, we would like to present a number of recommendations and 
open issues to stimulate further research. Since the recommendations are very diverse, we 
will present them by means of bulleted indices: 
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- The overview of different MIMO techniques presented in Section 4.2 raises the 
question what the effect of each of these techniques will be on the RX antenna array 
patterns (see Chapter 2). What is, e.g., the effect of a closed-loop technique based on 
the singular value decomposition on the antenna patterns? Note that the approach of 
Chapter 2 limits the answering of the first question to linear techniques. Is it possible to 
define other visualisation methods to also include non-linear techniques? 

 
- Although the wideband MIMO channel model described in Chapter 3 is an extension 

of an indoor SISO channel model that is supported by numerous measurements 
presented in literature, it would be beneficial to verify the extensions (such as the 
spatial correlation and LOS component) by performing MIMO channel measurements. 
If necessary, the model should be adapted accordingly. 

 
- The unified framework on MIMO (OFDM) introduced in Sections 4.2 and 5.3 can 

serve as a good starting point to define a unified theory on the various MIMO (OFDM) 
techniques. Based on the unified framework one could, e.g., search for a unified signal 
model, which again can be used to derive a general theoretical error-rate performance 
analysis. From this analysis, general space-time-frequency code design rules may be 
deduced. Perhaps the unified theory can be extended even further and beyond the 
boarders of the speciality of radio communication, because in areas like equalisation, 
remote sensing, and image processing, techniques are used with a lot of commonalities 
with SDM algorithms. 

 
- In Subsections 4.6.2 and 4.10.2, we derived upperbounds for the error-rate performance 

of ZF and MLD. It would be useful to find tight upperbounds on the error-rate 
performance of MMSE, ZF with SIC, and MMSE with SIC as well. Especially when 
the upperbounds are tight this would ease the evaluation of the performance of these 
algorithms for different MIMO configurations, since then long-lasting simulations are 
only needed when exact performance figures are required. 

 
- A more thorough study under which conditions the MIMO OFDM schemes based on 

the Euclidean distance criterion outperform dedicated Space-Frequency codes (see 
Subsection 5.7.1) would be beneficial. 

 
- Proper codes for MIMO OFDM, that are robust for a wide range of channel conditions 

including different correlation scenarios, can be designed, based on the space-
frequency error-rate analysis of Section 5.6 or extensions of it. (According to 
Subsection 5.8.3 there is still room for improvement with respect to the proposed coded 
SDM OFDM schemes.) 

 
- A possible solution to get closer to the outage performance might be the application of 

the turbo-SDM concept described in Section 4.13 to coded SDM OFDM. In order to 
reduce the complexity, it would be beneficial to find less complex algorithms that can 
replace the complex MAP MIMO detector, such as, e.g., a form of ZF that accepts a 
priori inputs. 

 
- Other solutions might be found by evaluating the performance of coded SDM OFDM 

with different types of coding schemes, e.g., Low-Density Parity Check (LDPC) 
coding. 
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- It would be desirable to find more flexible coded MIMO schemes, that like STC also 
benefit from the available transmit diversity. 

 
- It was observed in Subsection 5.7.3 that the defined soft values for PAC SIC are in 

general not correct, but coincidentally work properly for the detection of PAC 
transmissions. The definition of appropriate soft-decision output values for ZF with 
SIC and MMSE with SIC is still an open issue. 

 
- With respect to the overall throughput, it would be good to find efficient Medium 

Access Control (MAC) protocols to embed the principle of MIMO OFDM. Note that 
the training overhead increases linearly with the number of transmit antennas (Nt), 
moreover the packet size decreases by Nt, so the overhead grows quadratic with Nt. 
Therefore, more efficient MAC protocols must be found to deal with this problem, for 
instance by making the packet size larger (e.g., through frame aggregation), or reducing 
the overhead, or both. 

 
- The big performance loss observed in Figure 6-12, the remarks made in Subsections 

6.2.3 and 6.2.6, and the previous bulleted index call for the definition of stable and 
efficient channel training algorithms for MIMO OFDM. 

 
- Define good fallback mechanisms. The main question is when to fallback in coding 

rate/constellation size, and when to fallback in number of TX antennas. 
 
- In order to obtain a better understanding of the effect of system impairments such as 

frequency offset, timing offset, phase noise, IQ imbalance, DC offset, and non-linear 
amplifiers on MIMO, it would be useful to perform more fundamental analyses on their 
effect on, e.g., the error-rate performance. A good basis for these analyses forms the 
concise matrix MIMO OFDM signal model introduced in Section 5.4. When necessary, 
the estimation and synchronisation algorithms of Chapter 6 must be updated based on 
new findings. Maybe it is possible to find a general error model that includes all 
impairments. 

 
- Search for efficient mathematical algorithms that allow for low-cost hardware 

implementations of SDM OFDM. 
 
- In this dissertation we have only looked at open-loop MIMO (OFDM) schemes. For 

particular environments closed-loop schemes might be feasible and beneficial. Hence, 
it might be good to list and define a number of closed-loop MIMO (OFDM) schemes 
and evaluate their performances and compare the performances with those of their 
open-loop counterparts. 

 
- When a cellular system is the target application, interference issues might cause 

problems. For such an application, it would be useful to perform MIMO OFDM 
simulations with different interference sources, such as co-channel interference, 
adjacent-channel interference, etc. and evaluate the results. If possible, appropriate 
interference cancellation schemes must be found. In this context, adding an extra RX 
antenna opens new possibilities such as using this extra degree of freedom for 
interference cancellation. 
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- Extend the application of MIMO OFDM to networks beyond WLANs. Investigate how 
the MIMO OFDM concept can be embedded in a 4G framework. 

 
- The high potential of MIMO OFDM brings along an interesting observation, namely, 

that MIMO OFDM exploits two dimensions: the time/frequency dimension and the 
spatial dimension. This raises a fundamental question for research to future wireless 
communication systems: what is the next dimension to exploit? Or do we, by this 
concept, reach the limit and can we only achieve higher data rates by exploiting these 
two dimensions more and more efficiently? 



 

Appendix A  
 

Mathematical Appendix 

A.1 Matrix Theory 
 

A.1.1 References 
 
Most of the matrix theory that is described in the next subsections can be found in [54] and 
[113], and explicit references to these books will not be given. When other literature is 
used, however, the references will be included. 
 

A.1.2 Eigenvalues and Eigenvectors 
 
Let A be a matrix with complex entries and z be a complex vector, consider the equation 
 
 zAz λ= , (A.1) 
 
where λ is a scalar. If a scalar λ and a nonzero vector z happen to satisfy this equation, 
then λ is called an eigenvalue of A and z is called an eigenvector of A associated with λ. 
Note that the two occur inextricably as a pair, and that an eigenvector cannot be the zero 
vector. 
 
Or in other words, the number λ is an eigenvalue of matrix A if and only if 
 
 ( ) 0det =− IA λ , (A.2) 
 
This is the characteristic equation, and for a given solution λi, the corresponding 
eigenvector zi can be found by solving 
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 ( ) 0=− ii zIA λ . (A.3) 
 

A.1.3 Hermitian Matrix 
 
A matrix is said to be Hermitian if A = AH. 
 

A.1.4 The Singular Value Decomposition 
 
The Singular Value Decomposition (SVD) is closely associated with the eigenvalue-
eigenvector factorisation of a Hermitian matrix: A = UΛUH, where the eigenvalues are in 
the diagonal matrix Λ, and the eigenvector matrix is unitary: UHU = I, because the 
eigenvectors of a Hermitian matrix are orthonormal. The requirement that a matrix is 
Hermitian makes above factorisation very strict. The SVD, however, can be applied to any 
matrix: any M × N matrix A can be factored into: 
 
 HUDVA = . (A.4) 
 
The columns of the M × M matrix U are eigenvectors of AAH, and the columns of matrix V 
(N × N dimensional) are eigenvectors of AHA. The singular values σi are found on the 
main diagonal of the M × N matrix D and they are the square roots of the nonzero 
eigenvalues of both AAH and AHA:  
 
 ( )( ) HHHHHH UUDDUDVUDVAA == , and similarly HHH DVVDAA = . (A.5) 
 

A.1.5 Rank and Condition Number 
 
The rank of a matrix A equals the number of nonzero eigenvalues of that matrix A. 
 
The condition number of a matrix A is defined as the ratio between its maximum and 
minimum singular value ([100]): 
 

 ( )
min

max

σ
σκ =A . (A.6) 

 
A condition number of one implies that the matrix A is orthogonal. A large condition 
number means that A is highly non-orthogonal or ill-conditioned. 
 

A.1.6 (Non-)singular 
 
The following are equivalent for an N × N matrix A: 
 

1. A is non-singular; 
2. A-1 exists; 
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3. rank(A) = N; 
4. the rows of A are linearly independent; 
5. the columns of A are linearly independent; 
6. det(A) ≠ 0; 
7. the only solution to Az = 0 is z = 0; 
8. 0 is not an eigenvalue of A. 

 
The proof of 8) goes as follows: the matrix A is singular if and only if Az = 0 for some z ≠ 
0. This happens if and only if Az = 0⋅z, that is, if and only if λ = 0 is an eigenvalue. 
 

A.1.7 Nonnegative or Positive Semidefinite 
 
An N × N Hermitian matrix A is said to be nonnegative definite or positive semidefinite if 
 
 0≥AzzH , (A.7) 
 
for all nonzero complex vectors z. Note that if A = AH, then for all complex vectors z, the 
number zHAz is real. For the proof, compute (zHAz)H. One would expect the conjugate of 
the 1 × 1 matrix zHAz, but actually the same number is got back again, so the number must 
be real: 
 
 ( ) ( ) AzzzAzAzz HHHHHHH == . (A.8) 
 
Furthermore, note that each eigenvalue of a nonnegative definite matrix is a nonnegative 
real number. Let A be nonnegative definite, let λ be an eigenvalue of A, let z be an 
eigenvector of A associated with λ, and calculate zHAz = zHλz = λ||z||2. Then λ = zHAz/||z||2 
is real and nonnegative, since it is a ratio of a real nonnegative and a real positive number. 
 

A.1.8 Matrix Inversion Properties 
 
For any invertible square matrices A and B, with the same dimensions, 
 

 
( ) ( )

( ) ( ) 11111

111-1111

−−−−−

−−−−−−

−=−=

−=−=−

AABBAABAB
IBABBABBBA

 (A.9) 

 
When we have a matrix of the form A + BCD, where A and C are square invertible 
matrices, the Matrix Inversion Lemma is defined as ([66]) 
 
 ( ) ( ) 1111111 −−−−−−− +−=+ DABDACBAABCDA . (A.10) 
 

A.1.9 The Kronecker Product 
 
The Kronecker product of any M × N matrix A and X × Y matrix B, is defined by 
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N
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L
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22221

11211

. (A.11) 

 
The result on the right-hand side is an MX × NY matrix. 
 

A.1.10 Kronecker Product Identities 
 
In this subsection, a proof (as found in [47]) will be given for the theorem that for any M × 
N matrix A, N × P matrix B, and P × Q matrix C, 
 
 ( ) ( ) ( )BACABC vecvec ⊗= T , (A.12) 
 
where ⊗ denotes the Kronecker product and vec(.) stands for the vector operation, in 
which a vector is formed from the respective matrix by stacking its columns under each 
other. To prove Equation (A.12), we need a number of statements. Firstly note that, under 
the assumption that A, B, C and D have the right dimensions, 
 
 ( ) ( ) ( )( )DBCACDAB ⊗⊗=⊗ , (A.13) 
 
which is simple but tedious to show. Secondly, vec(A+B) = vec(A) + vec(B) and finally, if 
a and b are vectors, then vec(baT ) = a ⊗ b, both of which are obvious. 
 
Now, Equation (A.12) is proved as follows. B can be expressed as 
 

 ∑
=

=
P

p

T
pp

1
ubB , (A.14) 

 
where bp is column p of B and up is column p of the (non-square) identity matrix. Using 
this property and after changing the order of the 'vec'-operation and the sum, we can 
rewrite (A.12) as 
 

 ( ) ( ). vecvecvec ∑∑ =




















=

p

T
pp

p

T
pp CuAbCubAABC  (A.15) 

 
Because both Abp and CTup are vectors, 
 

 
( ) ( ) ( )

( )( ). 

vec

∑

∑∑
⊗⊗=

⊗=

p
pp

T

p
pp

T

p

T
pp

buAC

AbuCCuAb
 (A.16) 
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To finish the proof, just reverse the previous steps, like: 
 

 
( )( ) ( )

( ) ( ). vec

vec

BAC

ubACbuAC

⊗=









⊗=⊗⊗ ∑∑

T

p

T
pp

T

p
pp

T

 (A.17) 

 
Note that (A.12) also holds for the complex case. This can be shown by writing a complex 
matrix X as XR + jXI. By doing so, (A.12) becomes 
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 (A.18) 

 

A.1.11 Block Circulant 
 
In [108] it is shown that a circulant matrix can be diagonalised by a Fourier matrix. Here, 
this will be extended to the block circulant case. An NA × NB is called block circulant if it 
has the form 
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, (A.19) 

 
where Ci is an A × B matrix. C is a special kind of Toeplitz matrix where each block of 
columns is obtained by doing a block wrap-around downshift of the previous "block 
vector". When denoting K as its first block of columns, 
 
 ( )T

N 1210 −= CCCCK L , (A.20) 
 
C can be specified as 
 
 ( )KRKRRKKC 12 −= NL , (A.21) 
 
where  
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 AIER ⊗=  with ( )132 eeeeE NL= , (A.22) 
 
and ei is the i-th column of the N × N identity matrix. Now, the following theorem can be 
stated: 
 
Theorem: if C is a block circulant matrix, then it can be block diagonalised like 
 
 ( ) ( )BA IFCIF∆ ⊗⊗= −1 , (A.23) 
 
where F represents the N × N Fourier matrix and ∆ is a block diagonal matrix defined by  
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
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⊗

⊗
=

KIf

KIf
∆

A
N

A
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01

O , (A.24) 

 
with fi denoting the i-th row of the Fourier matrix and 
 

 ( )
( )

∑
−

=

−⋅
−

=⊗
1

0

12N

n

N
inj

nA
i e

π
CKIf . (A.25) 

 
Thus, the blocks on the block diagonal of ∆ are obtained by performing the DFT on the 
blocks of "block vector" K. 
 
Note that the Fourier matrix is defined as 
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with W = exp(–j2π/N). 
 
To prove this theorem, we start with verifying that a block circulant matrix is a polynomial 
in the downshift operator E. The polynomial is defined by 
 
 ( ) ( ) ( ) ( )1

1
2

2
10 ... −

− ⊗++⊗+⊗+⊗= N
N

N CECECECIP . (A.27) 
 
Comparing the i-th block of columns of above polynomial and using Ekei = e(i+k) mod N 
yields 
 



A.1  Matrix Theory 199 

 

( ) ( )( ) ( )( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

( ). 

...
...
...

...

1
1111

110

1
1

10

1
1

0

Bi

i
NiiN

iNNii

Ni
N

ii

BiN
N

BiNBi

IeC
KR

CeCe
CeCeCe

CeECEeCe

IeCEIeCIIeP

⊗=
=

⊗++⊗+
+⊗++⊗+⊗=

⊗++⊗+⊗=

⊗⊗++⊗⊗=⊗

−

−−+−

−+

−
−

−
−

 (A.28) 

 
Thus, the i-th block of columns of P equals the i-th block of columns of C, and since this 
holds for all i, it is shown that P equals C. With this knowledge, we can rewrite (A.23) as 
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Note that E is a circulant matrix and, as shown in [108], this can be diagonalised by F. 
Here, we will recall the proof. To show that E can be diagonalised by F, we have to prove 
that 
 
 DFFE = , (A.30) 
 
where D = diag((1 W W2 … WN–1)T). To that end, element (i,k) of FE is compared with the 
same element of DF: 
 
 ( ) ( ) ( )( )( ) ( )1

1
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−−−− == ik

k
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ik WWWW eFE L , (A.31) 
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This of course holds for all i and k (1 ≤ i, k ≤ N). When applying this result to (A.29), our 
theorem on block circulant matrices can be proved as follows: 
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And the i-th matrix on the block diagonal ∆, 1 ≤ i ≤ N, can be shown to be 
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which is the DFT on the blocks of K. This concludes the proof. 
 

A.2 Multivariate Complex Gaussian Distribution 
 
The probability density function of an M-dimensional real Gaussian (i.e., normal) random 
vector x, with a covariance matrix Qx and mean vector µx, is given by ([7]) 
 

 ( )
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1

π
. (A.35) 

 
Following the analysis of [117], an M-dimensional complex random variable z = x + jy, 
with x and y also being M-dimensional, is said to be multivariate circularly-symmetric (or 
spherically invariant) complex Gaussian distributed when the covariance matrix of real 
vector z', 
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has the special structure 
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With 
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H
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we see that 
 
 ( )zyx QQQ Re2

1==  and ( )zyxxy QQQ Im2
1−=−= , (A.39) 

 
where Qx, Qy and Qxy are the covariance and cross-covariance matrices of the vectors x 
and y. The fact that the covariance matrices of x and y are equal, explains the circular 
symmetry of z. 
 
To transform the real multivariate normal distribution of z' to the complex one of z, we 
need a number of properties that exist for the mapping: 
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These properties are: 
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The properties (1), (4) and (5) are easily verified. The second property follows from the 
first and the fact that 
 
 MM 2' III =⇔ . (A.42) 
 
The third property follows from 
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where the * stands for the conjugate of a vector/matrix (and not the Hermitian transpose of 
a vector/matrix). 
 
Using (A.37), we can say that Q'z = A'/2 and that Qz = A. Now, to make the transformation 
more clear, we split the probability density function of the real multivariate normal 
distribution of z', given by (A.35) with x = z', in two terms. The first term to transform is 
the determinant and the second is the exponent. The transformation of the determinant term 
is based on the third property of (A.41): 
 

 ( ) ( ) ( )( ) ( ) 12122121 detdet'det'2det −−−− === zz QAAQ ππππ . (A.44) 
 
where the last equality is obtained using the fact that the covariance of the complex vector 
z, Qz, is a nonnegative definite matrix. 
 
The second term of the probability density function, i.e., the exponent term, can be 
transformed to the complex case by using the first, second, fourth and fifth property of 
(A.41) and the substitutions y' = z' – µ'z and x' = A'–1y': 
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where the last equality is obtained from the fact that, for a Hermitian matrix Q and for all 
complex vectors d, the number dHQd is real. As a proof, we can compute (dHQd)H. We 
expect to get the conjugate of the 1 by 1 matrix dHQd, but instead, we get the same number 
back: (dHQd)H = dHQH(dH)H = dHQd. Therefore, the number must be real. 
 
Summarising, the probability density function (pdf) of a vector z with circularly-symmetric 
complex Gaussian distributed elements equals 
 
 ( ) ( ) ( ) ( )( )zz

H
zzp µzQµzQz −−−= −− 11 expdet π , (A.46) 

 
where Qz represents the covariance matrix and µz the mean of z. Note that this distribution 
is fully characterised by these two quantities. 



 

Appendix B  
 

Test System Specifications 

B.1 MBA-5 5 GHz Miniature Broadband Antenna Datasheet 
 

B.1.1 Introduction to MBA-5 
 
The Ascom MBA-5 (Miniature Broadband Antenna) is a wideband antenna designed 
primarily for wireless LAN applications in the 5GHz band ([10]). It covers all the US, 
European and Japanese 5GHz WLAN bands simultaneously. This datasheet gives a 
complete overview of the performance of the MBA-5 in terms of bandwidth and radiation 
pattern. Most of the information required for the integration of the antenna into new 
designs is given. A picture of the antenna is given in Figure B-1. 
 

 
Figure B-1: the MBA-5 antenna. 

 

B.1.2 Advantages 
 
Electrical and Radiation Performance 
 
The measured return loss bandwidth of the MBA-5 (VSWR 2:1 or better) extends from 5.1 
to 6.3 GHz for an unpackaged antenna. When packaged into plastic the bandwidth shifts 
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downwards by about 200 MHz, thus covering 4.9 to 6.1 GHz, i.e. all 5 GHz bands 
worldwide simultaneously. 
 
The radiation pattern of the MBA-5 in the azimuth plane resembles that of a dipole – 
omnidirectional with no nulls and a peak gain of between 1dBi and 0dBi depending on 
frequency (see Figure B-2). Peak gain of around 4dBi occurs in the elevation plane, 
directed upwards. 
 

 

 
Figure B-2: Radiation patterns of the MBA-5 antenna 

 
Mechanical Properties 
 
The MBA-5 is a surface-mount device requiring no special treatment and may be easily 
integrated into a design flow. Its small dimensions of approximately 15mm × 10mm × 
5mm make it perfect for PC-card integration. An array of up to 3 antennas will fit 
comfortably onto a PC-card extension, thus opening up the possibility for antenna spatial 
diversity. 
 
How it Works 
 
In brief, the key to the extremely wide bandwidth of the MBA-5 are the two coupled slots 
inherent in the shape of the antenna. Two separate resonances are excited, which combine 
to create the exceptionally broad bandwidth. 



B.1  MBA-5 5 GHz Miniature Broadband Antenna Datasheet   205 

Performance Optimization 
 
The small size of the Ascom MBA-5 means that the shape of its reflection loss curve is 
affected quite strongly by its surroundings. Results shown in Figure B-3 are for an MBA-5 
on a ground plane of 30 mm x 30 mm. 
 

 
Figure B-3: Results for an unpackaged antenna. When packaged into plastic the 

bandwidth shifts downwards by about 200 MHz, thus covering 4.9 to 6.1 GHz, i.e., all 
5GHz bands worldwide simultaneously. 
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B.2 Block Diagrams of the IF Stages of the Test System 
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Figure B-4: Block diagram of the baseband to IF conversion per TX branch. The 

baseband I and Q signals are fed through a Low-Pass Filter (LPF), mixed up to IF, 
and combined after that. 
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Figure B-5: Block diagram of the IF to low-IF conversion per RX branch. The IF 

input signal is properly scaled by the LNA and AGC to use the full resolution of the 
ADC. Then the signal passes a Band-Pass Filter (BPF). Finally, a circuitry of 

amplifiers, LO, and filters mix the signal down to low-IF. 
 



 

Appendix C  
 

Complexity Analysis 

C.1 Introduction 
 
In this appendix, the complexity is analysed for the SDM algorithms introduced in Chapter 
4: ZF, MMSE, ZF with SIC, MMSE with SIC, and MLD. The complexity figures are split 
in a complexity number for the preamble processing and a complexity number for the 
payload processing. The reason for this is that it is assumed that data is transferred on a 
packet-by-packet basis and that during the transmission of a packet the communication 
channel H stays constant (i.e., the MIMO system is operating in a quasi-static 
environment). Therefore, processes that do not depend on the information in the payload 
can be performed in the preamble phase. 
 
Before we determine the complexity of the SDM algorithms, we introduce a number of 
general rules, namely, the complexity of a matrix multiplication, the conversion from 
complex complexity figures to real complexity figures, the complexity of a slicer, and the 
complexity of finding a minimum value from a set of values. 
 
The complexity of a matrix product is determined as follows. Suppose two matrices A and 
B (real or complex) with dimensions C × D and D × E are multiplied, then the (i, l)-th 
element of the resulting matrix is given by 
 

 ∑
=

=
D

k
klikl

i ba
1

ba  (C.1) 

 
where ai represents the i-th row of matrix A, bl denotes the l-th column of B and aik and bkl 
stand for the k-th element of this row and column, respectively. Thus, in order to obtain 
one element of the resulting matrix, D – 1 additions and D multiplications need to be 
performed. The resulting matrix is C × E dimensional and, therefore, a total of C(D – 1)E 
additions and CDE multiplications are needed to multiply the two matrices A and B. 
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To write complex additions and complex multiplications in terms of real additions and 
real multiplications, it is easily verified that one complex addition (C_ADD) consists of 
two real additions (R_ADDs); the real and the imaginary part of the two complex numbers 
are added. Furthermore, a complex multiplication (C_MUL) can be rewritten in the 
following two ways ([89]): 
 
 ( )( ) )()( adbcjbdacjdcjba ++−=++ , (C.2) 
 
 ( )( ) ( )( )( )bdacdcbajbdacjdcjba −−+++−=++ )( . (C.3) 
 
The first option consists of 4 real multiplications (R_MULs), ac, bd, bc and ad, and 2 
R_ADDs, ac – bd and bc + ad. A subtraction is counted as an addition and the addition 
before the j does not count because the real and imaginary parts are stored separately. The 
second option has only three real multiplications (ac, bd, (a + b)(c + d), plus five real 
additions. Compared with the first case, the total operations count is higher by two, but in a 
number of hardware implementations, a multiplication is a more complex operation. In the 
remainder of this appendix, however, we will use the first option. 
 
The complexity of a slicer is minimal in terms of additions and/or multiplications. For an 
M-PSK constellation scheme, the phase range [–π, π] is divided in M equal parts. In such a 
regular structure, we can recursively search in which half of the (remaining) range the 
phase of the estimated symbol best fits. This results in a complexity equivalent to log2(M) 
comparisons. For an M-QAM constellation diagram, we can split the real and imaginary 
part. Each of these parts is regularly divided in √M slicing ranges. Also in this case, we can 
recursively search in which half of the (remaining) range the real or imaginary part of the 
estimated symbol best fits, and the complexity is equal to log2(√M) comparisons for the 
real and for the imaginary part, or 2⋅log2(√M) = log2(M) comparisons in total. It is 
reasonable to assume that a comparison is as complex as a real addition and, therefore, the 
slicing of the Nt-dimensional vector sest requires at most Nt⋅log2(M) R_ADDs. 
 
In order to find the minimum of N numbers in hardware, the easiest thing to do is start with 
the first two elements, subtract the second number from the first, and compare the result 
with zero. If the result is larger than zero, the second number is the smallest, otherwise the 
first number is the smallest, etc. Obviously, finding the minimum between two real 
numbers has the complexity of one real addition. As a result, determining the minimum of 
N values has a complexity of N – 1 real additions. 
 
Based on these general rules, the complexity of ZF, MMSE, ZF with SIC, MMSE with 
SIC, and MLD is determined, respectively, in Appendix C.2, Appendix C.3, Appendix C.4, 
Appendix C.5, and Appendix C.6. 
 

C.2 Complexity of ZF 
 
As described in Subsection 4.6.1, the Zero Forcing technique is based on calculation of the 
pseudo-inverse of the channel transfer matrix H. Because it is assumed that the MIMO 
system is operating in a quasi-static environment, i.e., H is constant during a packet 
transmission, the pseudo-inverse of H needs to be calculated only once per packet. The 
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pseudo-inverse can be calculated after the channel training in the preamble processing. 
During the payload processing, the pseudo-inverse is used for the estimation of every 
transmitted MIMO vector s of the corresponding packet. In this section the complexity of 
the ZF algorithm in the preamble and payload processing is determined. 
 
Complexity in the preamble processing 
 
During the preamble processing, the pseudo-inverse of the channel matrix H is determined. 
For determining the complexity of the calculation of the pseudo-inverse, we will use the 
equality that can be deduced from Subsection 4.6.1 and is given by 
 
 ( ) HH HHHH 1† −

= . (C.4) 
 
The dimensions of H†, H and HH are Nt × Nr, Nr × Nt and Nt × Nr, respectively. To find the 
pseudo-inverse of H, we first need to determine the complexity of the matrix product HHH.  
To determine this complexity, we will use the general rule introduced in Appendix C.1 that 
states that the complexity of the product of two matrices A and B (real or complex) with 
dimensions C × D and D × E equals C(D – 1)E additions and CDE multiplications (real or 
complex). Hence, the complexity of the matrix product HHH yields Nt

2(Nr–1) C_ADDs 
and Nt

2Nr C_MULs. The result is a square matrix with dimensions Nt × Nt. 
 
From this square matrix HHH, the inverse needs to be determined. In [89] it is shown that 
the direct inversion of a given square matrix A (with dimensions N × N) has a complexity 
in the order of N3 additions and N3 multiplications in total. So, inverting HHH has a 
complexity of Nt

3 C_ADDs and Nt
3 C_MULs. 

 
Finally, the inverse of HHH (which is Nt × Nt dimensional) is multiplied by HH. The 
complexity of this last multiplication is equal to Nt(Nt–1)Nr C_ADDs and Nt

2Nr C_MULs 
(see Appendix C.1). This leads to a total complexity of Nt

3 + Nt
2(Nr–1) + Nt(Nt–1)Nr 

C_ADDs and Nt
3 + 2Nt

2Nr C_MULs in the training phase, or (based on a general rule 
introduced in Appendix C.1), the complexity in terms of real operations equals 
 

 
( ) ( )

( ) , R_ADDs  2284       

121244
23

223

rtrtt

rttrtrtt

NNNNN

NNNNNNNN

−−+=

−+−++
 (C.5) 

 
and 4Nt

3 + 8Nt
2Nr R_MULs. 

 
Complexity in the payload processing 
 
The payload processing for ZF consists of a matrix-vector multiplication per transmitted 
vector and a slicing step to translate the estimated elements of s to the possible transmitted 
symbols. Recalling from Subsection 4.6.1, the matrix-vector multiplication is given by 
 
 xHs †

est = . (C.6) 
 
The complexity of this product is equal to Nt(Nr – 1) complex additions and NtNr complex 
multiplications. 
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As explained in Appendix C.1, the complexity of slicing Nt M-ary constellation points 
equals Nt⋅log2(M) R_ADDs. 
  
Summarising, the complexity of the ZF algorithm during the payload processing and per 
transmitted vector s is equal to Nt(Nr – 1) C_ADDs + Nt⋅log2(M) R_ADDs and NtNr 
C_MULs, or equivalently, 2NtNr + 2Nt(Nr – 1) + Nt⋅log2(M) R_ADDs and 4NtNr R_MULs. 
When Ns vectors are transmitted within a packet, these numbers must be multiplied by Ns 
to obtain the complexity per packet. 
 

C.3 Complexity of MMSE 
 
The complexity of the MMSE algorithm is almost equal to the complexity of the ZF 
method described in the previous section. 
 
In the preamble-processing phase, the following MIMO processing matrix needs to be 
determined (see Subsection 4.7.1): 
 
 ( ) HH

Nt
HHHIW 1−

+= α . (C.7) 
 
The calculation of this matrix has almost the same complexity as the determination of the 
pseudo-inverse in case of the ZF algorithm. Since α is real, the only additional complexity 
consists of the Nt real additions of α (i.e., the addition of α to the real part of the diagonal 
elements of HHH). This leads to a total complexity in the preamble-processing phase of 
4Nt

3 + Nt
2(8Nr – 2) – 2NtNr + Nt R_ADDs and 4Nt

3 + 8Nt
2Nr R_MULs. 

 
The complexity of MMSE during the payload processing is equal to that of ZF and consists 
of a matrix-vector product with the same dimensions and slicing. Recalling from the 
previous section, the payload complexity equals 2NtNr + 2Nt(Nr–1) + Nt⋅log2(M) R_ADDs 
and 4NtNr R_MULs for every transmitted vector s to decode. 
 

C.4 Complexity of ZF with SIC 
 
The processing of the ZF with SIC algorithm can be divided into two parts: the processing 
during the preamble and processing of the payload. Based on the assumption that the 
MIMO channel is static during a packet transmission, the ordering and the weight vectors 
can be determined during the preamble processing. During the payload processing the 
actual detection and SIC is performed. 
 
Complexity in the preamble processing 
 
In order to find the weighting vectors, an iterative algorithm that consists of two steps can 
be performed. First the steps are described and then the complexity will be determined: 
 

1. Compute the pseudo-inverse of H, H†. Find the minimum squared length row of 
H†. This row is a weight vector. Permute it to be the last row and permute the 
columns of H accordingly. 
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2. (While 01 >−tN ) go back to step 1, but now with: 
 
 ( )11

)1(
−

− =→
t

t
N

N hhHH L  and 1−→ tt NN . (C.8) 
 
The complexity of calculating the pseudo-inverse is already determined in Appendix C.2. 
For an Nr × Nt dimensional matrix H, it equals 4Nt

3 + Nt
2(8Nr – 2) – 2NtNr R_ADDs and 

4Nt
3 + 8Nt

2Nr R_MULs. 
 
The next steps are the calculation of the squared length of all rows of H† and the 
determination of the minimum squared length row. Note that, according to Subsection 
4.8.1 finding the minimum squared length row of H is equal to finding the minimum 
element Ppp on the diagonal of P, p = 1, …, Nt. Since P is obtained through the 
computation of the pseudo-inverse of H, the complexity of these steps consists only of 
finding the minimum. As explained in Appendix C.1, finding a minimum of Nt values Nt 
values has a complexity of Nt – 1 real additions. 
 
The permutations of step 1 are considered to have no complexity. The only thing that needs 
to be done is exchanging the memory pointers that respectively point to the two rows of H† 
and the two columns of H that need to be permuted. 
  
Since the algorithm is an iterative algorithm, and the dimensions of the used matrices scale 
down, the complexity per iteration is reduced. To take along this reduction in complexity 
during the iterations, the total complexity can be written by using series. The final number 
of real additions can be shown to be equal to 
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The total number of real multiplications of the preamble phase of ZF with SIC equals 
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Complexity in the payload processing 
 
During the data processing the weighting vectors are used to first estimate the best element 
of the transmitted vector s. The result is sliced to find a hard-decision value of the 
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transmitted constellation symbol and then this symbol is used in the feedback loop in order 
to find the next estimate. The following steps represent this iterative process: 
 

1. Form the estimate of the best component p of s. Due to the permutation the 
corresponding weight vector equals the Nt-th row of permuted H†. In case of ZF: 

 
 ( ) xws tN

p =est . (C.11) 
  

Slice (sest)p to the nearest constellation point (sest,sliced)p. 
 

2. (While 01 >−tN ) go back to step 1, but now with 
 
 ( )

pNt est,slicedshxx −→  and 1−→ tt NN . (C.12) 

 
The complexity of the first step of this iterative algorithm equals Nr – 1 C_ADDs and Nr 
C_MULs, because two Nr-element vectors are multiplied. The slicing step for an M-ary 
constellation has a complexity of log2(M) R_ADDs as is explained in Appendix C.1. Step 2 
consists of a scalar-vector product and a vector subtraction. The scalar-vector product has a 
complexity that is equal to Nr C_MULs and the complexity of the vector subtraction is Nr 
C_ADDs, since the vectors have Nr elements. 
 
Because above steps are performed Nt times, it can be said that the complexity of the 
payload processing of Zero Forcing with Successive Interference Cancellation equals 
2Nt(4Nr – 1) + Nt⋅log2(M) R_ADDs and 8NtNr R_MULs per transmitted vector s. 
 
Finally, it may be interesting to note that an efficient low-complexity implementation of 
the SIC principle can be found in [49]. 
 

C.5 Complexity of MMSE with SIC 
 
The complexity of MMSE with SIC can be determined in the same way as is done for Zero 
Forcing with SIC in the previous section. Compared to ZF with SIC, there is a slight 
difference in the preamble processing, namely in the determination of the weight vectors. 
In case of MMSE, the iterative process of the weight calculation is given by 
 

1. Compute the weight matrix W = PHH, with P = (αI + HHH)–1. Find the smallest 
diagonal entry of P and suppose this is the p-th entry. Permute the p-th row of W to 
be the last row and permute the columns of H accordingly. The permuted row of W 
is a weight vector. 

 
2. (While 01 >−tN ) go back to step 1, but now with: 

 
 ( )11

)1(
−

− =→
t

t
N

N hhHH L  and 1−→ tt NN . (C.13) 
 
Compared to ZF with SIC, the complexity of step 1 is slightly higher, because of the 
addition of αI to HHH. Since α is real, the only additional complexity consists of the Nt 
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real additions of α (i.e., the addition of α to the real part of the diagonal elements of HHH). 
This leads to a complexity of 4Nt

3 + Nt
2(8Nr – 2) – 2NtNr + Nt R_ADDs and 4Nt

3 + 8Nt
2Nr 

R_MULs. Taking all iterations of the algorithm into account, this leads to a total 
complexity (including the complexity of finding the minimal diagonal element of P) of 
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For the MMSE algorithm with SIC, the payload processing is equivalent to the ZF 
technique with SIC, except that in the former case the weight vectors are rows of the 
processing matrix W in stead of rows of the pseudo-inverse of H. The last fact is irrelevant 
for the complexity, thus, the complexity of the payload processing of MMSE with SIC 
equals 2Nt(4Nr – 1) + Nt⋅log2(M) R_ADDs and 8NtNr R_MULs per transmitted vector s 
(see Appendix C.4). 
 

C.6 Complexity of MLD 
 
Since the search in MLD goes over all possible transmitted vectors si, with i = 1, …, I, the 
complexity of MLD is proportional to the number of candidates I. Furthermore, the search 
is performed in the "x-space" and therefore each candidate si has to be multiplied by the 
channel matrix H. Note that we can write this matrix-vector product of the i-th candidate as 
 

 ( )∑
=

tN

p
pip

1
sh , (C.16) 

 
where hp denotes the p-th column of H. Since all elements of si are taken from the set of M 
constellation points and, thus, a given element is taken from the set {s1, …, sM}, we can 
obtain all MLD candidates following the tree of Figure C-1. 
 
When the channel can be assumed static during a packet transmission, it is efficient to store 
all candidates in the memory during the preamble processing and use them in the payload 
processing. From Figure C-1 it can be observed, however, that the amount of candidates 
grows exponentially with the number of TX antennas. When the memory is not large 
enough, not all candidates can be stored and they have to be calculated for every 
transmitted vector to perform MLD. So, clearly the complexity of MLD is largely 
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dependent on the amount of memory that is available or that one is willing to use. Two 
extreme cases will be compared in this section: 
 
- Minimum amount of memory: just enough memory is available to store the products of 

the columns of H times the constellation points. For instance, for BPSK enough 
memory should be implemented to store (hp, –hp) for all 1 ≤ p ≤ Nt. Note that in this 
case it is not really necessary to store –hp, because it can be deduced easily from hp 
and, thus, two times less memory is required. Also for other constellation diagrams 
their symmetry can be exploited. Furthermore, note that in this case for every vector 
within the payload, all possible combinations of Hsi, with 1 ≤ i ≤ I, have to be 
determined over and over again, leading to a significant complexity penalty. 

 
- Maximum amount of memory: enough memory is available to store all possible 

combinations of Hsi, with 1 ≤ i ≤ I, during the training phase. Note that, since I grows 
exponentially with Nt, a large memory may be required. 

 
Next, the complexity of above cases will be determined both for the preamble processing 
and for the payload processing. 
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Figure C-1: All candidates for MLD. 

 
Complexity in the preamble processing (minimum amount of memory) 
 
In the case that hardly any memory is used for Maximum Likelihood Decoding, a large 
part of the processing takes place in the data phase. The only processing needed in the 
training phase with respect to MLD is the calculation of the products of the constellation 
values with the columns of H. If there are M constellation points, then the complexity of 
determining these products is MNrNt C_MULs or 2MNrNt R_ADDs and 4MNrNt R_MULs. 
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Complexity in the payload processing (minimum amount of memory) 
 
As shown in Subsection 4.10.1, the maximum likelihood detection per transmitted vector is 
given by 
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Because we assume that enough memory is present to at least store all the products of the 
constellation points with the columns of H, the hps's, only complex additions are required 
to find x – Hsi. Starting at x and then with x – h1s1 to x – h1sM, we can further use the tree 
as shown in Figure C-1 to calculate all x – Hsi, i = 1, …, I. The complexity equals 
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Calculating the squared norm of the result can be shown to have a complexity of 2Nr real 
multiplications and 2Nr – 1 real additions. Since we have I candidates, the calculation of 
the squared norm needs to be performed I times. Finally, the minimum of the I possible 
squared norms must be obtained which introduces a complexity of I – 1 extra real additions 
(see Appendix C.1). So, in total this yields a complexity per transmitted vector of 2NrI 
R_MULs and 
 

 12
1

12 −+
−

− IN
M
IMN rr  R_ADDs. (C.19) 

 
If a packet consists of Ns vectors, the total complexity of the payload processing is 
obtained by multiplying above numbers by Ns. 
 
Complexity in the preamble processing (maximum amount of memory) 
 
If there is enough memory available to store all candidates, they can be determined during 
the preamble processing and used in the data phase. The complexity of the matrix-vector 
product Hsi can be obtained using the tree of Figure C-1. Starting with h1s1 to h1sM, we can 
further use the tree to calculate all Hsi, i = 1, …, I. Thus, first, the products of every 
column of H with every constellation point value should be determined. This has a total 
complexity of 2MNrNt R_ADDs and 4MNrNt R_MULs. After that, the additions as shown 
in the tree have to be performed. This has a complexity of 
 

 
1

11
2

2 −
−

=
−

=
∑ M

MNMNM
tt N

r

N

p
r

p  C_ADDs. (C.20) 

 
This gives a total complexity of 4MNrNt R_MULs and 
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Complexity in the payload processing (maximum amount of memory) 
 
During the data phase the vector subtraction x – Hsi and the squared norm of the result 
have to be determined for the I possible s vectors. The next step is to obtain the minimum 
of the squared norms. The vector subtraction x – Hsi is performed for i = 1, …, I and has a 
complexity equal to NrI C_ADDs. Next, the norms of the I results have to be determined. 
This has a complexity of (2Nr–1)I R_ADDs and 2NrI R_MULs. After that, the minimum of 
the I (real) norms must be obtained which has a complexity equal to I – 1 R_ADDs. So, 
this yields a total complexity of 4NrI – 1 R_ADDs and 2NrI R_MULs per transmitted 
vector. 
 
To obtain the complexity for the entire packet, these complexity numbers have to be 
multiplied by the number of spatial vectors within a packet, Ns. Note that these complexity 
figures increase linearly with the number of receiving antennas and exponentially with the 
number of transmit antennas. 
 
It is possible to reduce this complexity considerably without too much loss in performance. 
From above analysis, it is clear that one of the significant terms in the complexity 
calculation for MLD is the determination of the norm of x – Hsi (commonly known as the 
squared l2 norm ([54]): ||x – Hsi||2). In order to reduce the complexity, an approximation of 
the l1 norm can be used: 
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where hq stands for the q-th row of H. This approximation consists only of real additions 
(and no multiplications) making the MLD algorithm less complex. The drawback of MLD 
with the approximated norm is that the BER performance deteriorates by approximately 
0.5 dB (see, e.g., Figure 4-18 and [129]). 
 
The new norm definition does not influence the complexity of the preamble processing. 
The complexity of the payload phase, however, is significantly reduced since the 
calculation of the approximated l1 norm results in a complexity of (2Nr – 1)I real additions 
and no multiplications. As a result, the overall complexity per TX vector for this reduced 
complexity case equals 4NrI – 1 R_ADDs. Clearly, this is a significant reduction in 
complexity compared to the previous numbers, but the complexity still increases 
exponentially with Nt. More ideas for complexity reduction are published, e.g., in [11]. 
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Samenvatting 

Breedbandige applicaties – zoals hoge snelheid computer netwerken, multimedia diensten, 
of data netwerken in ziekenhuizen voor telediagnose met behulp van digitale informatie – 
en de vraag naar flexibiliteit zijn de aanjagers van de behoefte naar breedbandige draadloze 
communicatiesystemen. Omdat het beschikbare frequentiespectrum schaars is, zullen toe-
komstige systemen aanmerkelijk efficiënter moeten omgaan met het spectrum ter verbete-
ring van de link datasnelheid en netwerk capaciteit. Een veelbelovende manier is het ge-
bruik van meerdere antennes bij zowel de zender als de ontvanger (een zogenaamd 
Multiple-Input Multiple-Output (MIMO) systeem). Met een dergelijk systeem kan de data-
snelheid worden verhoogd door verschillende datastromen simultaan te zenden op ver-
schillende zendantennes maar op dezelfde draaggolf. Hoewel deze parallelle datastromen 
mixen in de lucht kunnen ze toch herwonnen worden bij de ontvanger door gebruik te ma-
ken van meerdere ontvangantennes en corresponderende signaalbewerkingsalgoritmen, 
onder de voorwaarde dat het MIMO kanaal goed geconditioneerd is. Over het algemeen is 
dit het geval in omgevingen waarin het radiosignaal in hoge mate wordt verstrooid, zoals 
ruimtes binnenshuis. Deze techniek wordt Space Division Multiplexing (SDM) genoemd. 
 
De combinatie van de datasnelheidsverbetering van SDM met de robuustheid van Orthogo-
nal Frequency Division Multiplexing (OFDM) tegen smalbandige interferentie en frequen-
tieselectieve fading, veroorzaakt door ernstige multipadverstrooiing, wordt gezien als een 
veelbelovende basis voor toekomstige radiocommunicatiesystemen met hoge datasnelheid 
(voor gebruik binnenshuis). SDM OFDM is de focus van dit proefschrift en de belangrijk-
ste bijdragen, in de logische volgorde van fundamenteel begrip, theoretische analyse tot 
praktische metingen, worden hieronder opgesomd. 
  
Ten eerste, door middel van een fysische interpretatie is een fundamentele en intuïtieve 
uitleg gegeven van de spectrale efficiëntie en stabiliteit van een draadloos MIMO systeem 
in omgevingen waarin het radiosignaal in hoge mate wordt verstrooid, zoals binnenshuis. 
 
Ten tweede is een generiek breedbandig MIMO kanaalmodel voor binnenshuis voorgesteld 
dat mede een Line-of-Sight (LOS) component en ruimtelijke-correlatie modelleert. Dit 
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model comprimeert de typisch grote hoeveelheid kanaalparameters tot een klein aantal 
bewust gekozen parameters. 
 
Ten derde zijn verschillende smalbandige SDM algoritmen beschreven. Deze beschrijving 
bevat tevens schema's die betrouwbaarheidsindicaties meegeven aan het uitgangssignaal 
voor situaties waarin externe codering en decodering wordt gebruikt. De foutenkans pres-
tatie en de complexiteit van de algoritmen is geëvalueerd voor verschillende antenneconfi-
guraties, constellatiegroottes, en kanaaleigenschappen (inclusief ruimtelijke correlatie en 
een LOS component), met en zonder codering. Het is aangetoond dat Maximum Likeli-
hood Detection (MLD) beter presteert dan de andere technieken. De complexiteit van 
MLD is echter het grootst en groeit exponentieel met het aantal zendantennes. Minder 
complexe alternatieven zijn gevonden met slechts een beperkt prestatieverlies. 
 
Ten vierde observeerden we door middel van een generieke kijk op (gecodeerde) MIMO 
technieken dat de beste prestatie behaald kan worden door een evaluatie te doen over alle 
punten van het niet-redundante rooster dat alle mogelijke ruimte-tijd codewoorden bevat. 
De complexiteit van een zodanige zoektocht groeit echter exponentieel met het aantal 
rooster punten. Het in dit proefschrift geïntroduceerde turbo SDM schema behaalt een sig-
nificante complexiteitsreductie terwijl de prestatie erg dicht bij die van volledige evaluatie 
ligt. De complexiteit is gereduceerd door the ruimte- en tijdbewerking te scheiden. De 
goede prestatie wordt bereikt door iteratie tussen deze bewerkingsstappen uit te voeren. 
Deze aanpak is afgeleid van het zogenaamde decoderingsprincipe van turbo-coding.  
 
Ten vijfde, omdat OFDM al de basis vormt van de bestaande draadloze Local Area Net-
work (LAN) standaarden IEEE 802.11a en g, wordt de combinatie van SDM en OFDM 
gezien als een aantrekkelijke oplossing voor toekomstige draadloze LANs met hoge snel-
heden. OFDM splitst, over het algemeen gesproken, een breedbandig frequentieselectief 
kanaal in een aantal smalbandige kanalen (elk met frequentie onafhankelijke fading). Dit 
betekent dat per subkanaal de gepresenteerde smalbandige SDM algoritmen toegepast 
kunnen worden. De combinatie SDM OFDM is geëvalueerd in theorie, met simulaties ter 
evaluatie van de prestatie en met metingen. De theoretische evaluatie is uitgevoerd met be-
hulp van een algemene ruimte-frequentie foutenkansanalyse. Het is aangetoond dat de 
maximale diversiteitwinst gelijk is aan het product van het aantal zend- en ontvanganten-
nes en de effectieve lengte van de impuls responsie van het kanaal. SDM OFDM schema's 
met codering zijn voorgesteld, die een groot deel van deze diversiteitwinst behalen. 
 
Ten zesde, in de praktijk moet het systeem kunnen omgaan met systeemverstoringen zoals 
frequentie offset, offset in de tijdsbepaling, fase ruis, DC offset, etc. Om deze verstoringen 
voor SDM OFDM in de draadloze LAN context te kunnen aanpakken hebben we training 
en synchronisatiealgoritmen voorgesteld die een uitbreiding zijn op die van IEEE 802.11a 
systemen. Om deze algoritmen en het algemene SDM OFDM concept te valideren is in 
Agere Systems een testsysteem gebouwd met drie zend- en drie ontvangantennes en geba-
seerd op IEEE 802.11a parameters. Meetresultaten met dit testsysteem in een kantoorom-
geving laten succesvolle transmissies met snelheden tot 162 Mb/s zien. Dit is drie keer de 
data snelheid van een "gewoon" IEEE 802.11a OFDM systeem. 
 
Tenslotte concludeerden we dat SDM OFDM, hoewel er ruimte is voor verbetering, een 
aantrekkelijke en praktische oplossing is om de datasnelheid en/of robuustheid van draad-
loze systemen, bijvoorbeeld gebaseerd op IEEE 802.11a, aanzienlijk te verbeteren. 



 

 
 

Acknowledgements 

 
Obtaining a Ph.D. degree is a long, hard, but very interesting "journey". Inspiring company 
and a stimulating environment together with a good vision and corresponding tasks and 
planning are crucial to succeed. Without the intention to forget someone, I would like to 
express my gratitude to those who accompanied me during the journey and directly or 
indirectly provided support and advice on the definition of the goals and the execution of 
the corresponding tasks. 
 
It started more or less with prof. Gert Brussaard and dr. Peter Smulders getting me into the 
exciting world of wireless (digital) communication systems and helping me to find a M.Sc. 
project in a company. Dr. Richard van Nee and dr. Geert Awater made this possible in the 
very stimulating environment of Bell Labs, Lucent Technologies, Nieuwegein. After 
finishing my M.Sc. thesis, the enthusiasm of above persons and the full financial support 
of Lucent Technologies (and later Agere Systems), which is gratefully acknowledged, led 
to the definition of my Ph.D. project. I am very thankful for the rather unique opportunity I 
got by starting my Ph.D. work in combination with the Radiocommunication group of the 
Eindhoven University of Technology (TU/e) and Bell Labs. 
 
Moreover, I would like to thank prof. Gert Brussaard and dr. Peter Smulders for their 
supervision, advice, feedback, and valuable suggestions during my Ph.D. project, and for 
being my first promotor and copromotor, respectively. Special thanks for giving me the 
freedom to do the project in a company. Sincere credits go to dr. Richard van Nee and dr. 
Jochen Hammerschmidt who coached me from the company side, respectively the first 
year and the last two and a half years; Richard for his enthusiasm, creativity, and great 
suggestions, Jochen for his advice, thorough review of my work, for being particularly 
hard to convince, and the role he played in the 6 weeks internship in Agere in Murray Hill. 
Having worked in the environment where, among others, the transistor was invented and 
Claude Shannon did his fundamental studies which form a basis of this work, was very 
inspiring and unforgettable. In this context I would also like to thank Aon Mujtaba. 
 



234  Acknowledgements   
 
Furthermore, the other managers of the Lucent and Agere days, dr. Ran-Hong Yan, dr. 
Bruce Tuch, Jan Kruys, and Willem Mulder, are thanked for their support and providing 
me the freedom to do my Ph.D. work in the company. 
 
James Hopper, Gert Draijer, and Ronald van der Burg did a great job in building a MIMO 
test system that excellently fulfilled the requirements I drew up. I also had the pleasure of 
working together with many other persons within Lucent and Agere, the university, the B4 
project, and Fitness. These diverse contacts created the right mix of atmosphere, valuable 
information sources, and inspiration, and have highly contributed to the achieved results. 
Without the intention to forget someone, I would like to especially mention Ad Kamerman, 
Bas Driesen, Isabella Modonesi, Jan Boer, Kai Kriedte, Mark Wezelenburg, Nedim 
Erkocevic, Pieter-Paul Giesberts, Ra'anan Gil, Richard van Leeuwen, Rob Kopmeiners, 
Vic Hayes, Xiao-Jiao Tao, Xiaowen Wang, Yanling Sun, and the two students I had the 
pleasure to coach during their M.Sc. project in Agere: Tim Schenk and Robert van Poppel. 
Moreover, Tim Schenk also started his Ph.D. study in combination with TU/e and Agere 
Systems having me as coach. I would like to thank him for his tricky questions, the fruitful 
discussions, and nice cooperation. 
 
Special thanks go to dr. Stephan ten Brink for helping me getting up to speed with turbo 
processing, for the support with developing a simulation tool for Turbo SDM, and for 
referring me to the great tool he developed for evaluation of turbo processing, called the 
EXIT chart method. 
 
I would like to thank the Ph.D. committee members for their contribution, especially my 
second promotor prof. Leo Ligthart and the other core-committee members, prof. Erik 
Fledderus, and prof. Jan Bergmans, for reviewing the manuscript and providing me with 
valuable feedback. 
 
I am very grateful to my family for their interest, encouragement, and support; in particular 
my parents who never stopped stimulating me and who always supported and encouraged 
me in my learning process. I also want to thank my friends for providing a listening ear and 
a different perspective. Above all, I would like to thank God for the talents He gave me. 
 
Last but not least Jessica; I really appreciate everything you did to support me. Thank 
you…  



 

 
 

Curriculum Vitae 

Allert van Zelst was born in Waalwijk, The Netherlands, on March 19, 1976. After 
attending the secondary school at the Willem van Oranje College in Waalwijk, he started 
Electrical Engineering (EE) at the Eindhoven University of Technology (TU/e) in 
Eindhoven, The Netherlands, in September 1994. About five years later, he received the 
M.Sc. degree in EE at TU/e after finishing a graduation project on data-rate enhancements 
of Wireless Local Area Networks by exploiting the spatial dimension through multiple-
antenna techniques. This project was carried out at Bell Labs, Lucent Technologies, in 
Nieuwegein, The Netherlands. Based on this work, he won the second prize of the IEEE 
Region 8 Student Paper Contest 2000 for a paper entitled "Space Division Multiplexing 
Algorithms". In November 1999, A. van Zelst continued with research on this topic to 
pursue the Ph.D. degree at the radio communications chair of TU/e, which resulted in this 
dissertation. The Ph.D. project was sponsored by the Dutch cooperative research project 
B4 Broadband Radio@hand and Agere Systems (formerly the Microelectronics Group of 
Lucent Technologies) in Nieuwegein, The Netherlands. The main part of the research was 
performed within the Wireless Systems Research department of Agere Systems in 
Nieuwegein. In the framework of the Ph.D. project, A. van Zelst also visited a part of this 
department in Murray Hill, New Jersey, USA, for an internship of 6 weeks. As of January 
2004, he joined Airgo Networks, Breukelen, The Netherlands. 





 



 

 


