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Abstract — This paper presents Space Division
Multiplexing (SDM) as a technology to satisfy the user
demand for ever higher bit rates in wireless Local area
network technology. SDM uses multiple transmit and
receive antennas to increase bit rate proportionally,
without reducing range, delay spread tolerance and
spectrum occupancy. The optimal SDM receiver is the
maximum likelihood decoder, which has the problem
that its computational complexity is exponential in the
number of antennas. This paper discusses complexity
reduction, looks at existing, approximate algorithms
and proposes new, exact algorithms. The Symbol Error
rate performance and the computational complexity are
compared and discussed.

I . Introduction

The development of wireless Local Area Network
technology is driven primarily by an ever-increasing
need for user bandwidth and system capacity.
Traditionally, higher bit rates have been obtained using
larger modulation constellations and higher symbol
rates, resulting in a larger signal bandwidth. Equalizers
or OFDM (Orthogonal Frequency Division
Multiplexing) are employed to combat the increased
inter-symbol interference caused by multi-path
propagation. The problems associated with this
approach are:�  Large bandwidths are mostly available in higher

frequency bands. As free space signal loss
decreases inversely proportional with carrier
frequency, the link budget is tighter than for lower
frequencies. In addition, high frequency RF
circuitry is more costly and less power efficient.�  Since more bits per second are transmitted, Eb/N0

decreases, reducing the link budget even more.�  Higher signaling rates imply higher sensitivity to
inter-symbol interference (ISI).

Space division Multiplexing (SDM) [3] where
information is transmitted and received over several
transmit antennas and receive antennas in parallel,
avoids those problems.�  Capacity gain can be realized in existing bands.

Thus there is no additional free space loss, and
cost efficient RF designs can be reused.�  The receiver diversity order is equal to the number
of receive antennas [1]. As antennas are added, the
SNR gain compensates for the loss in Eb/N0 caused
by the fact that the available energy is be divided
over multiple transmitters.

�  As the signaling rate remains the same, there is no
additional ISI (in fact delay spread robustness
increases [2])

The price is in the additional RF circuitry (of which parts,
such as local oscill ators can be shared), and higher signal
processing complexity. This paper evaluates complexity
and proposes methods to reduce it.

We consider a communication system, which transmits
symbols at discrete times. If M and N denote the number
transmit and receive antennas. The system is described by:

nHsx �� (1)

where s is the M-dimensional transmit vector, each
element of which is chosen from a (complex-valued)
constellation, H is the N � M complex, random channel
matrix and n is an N-dimensional complex AWGN vector.
We assume Rayleigh flat fading (see [2] for extension to
the case of frequency selective fading) for each element of
H, reflecting a rich-scattered, indoor radio environment.

We assume that the channel matrix is known by the
receiver and remains constant over the duration of the data
packet. The training phase, during which the receiver
learns H, is outside the scope of this paper.

II . Optimal Receiver Algor ithm

Reference [3] estimates the transmitted symbol by
multiplication of x by the Moore-Penrose pseudo-inverse
of the channel matrix. An improved algorithm is to use
MMSE (Minimum Mean Squared Error) estimator that
would be optimal if s was a continuous, rather than a
discrete-valued vector. A further improvement, which is to
use decision feedback, is described as well . The best
element (with smallest estimated error) of the transmitted
vector is computed and sliced, i.e. mapped to one of its
possible discrete values. The received vector x is then
compensated for this decision, and the next best element is
decoded, and so on, until a complete estimate of the
transmitted vector, ŝ  is obtained. These methods have in
common that they have a computational complexity of
O(M3) and they achieve a receiver diversity of order
N �  M + 1. This implies that the number of receive
antennas must be equal or greater than the number of
transmit antennas for this communication system to work.

Reference [2] derives the optimal receiver, which is a
maximum likelihood detector (MLD). Given the received
symbol vector x, the optimal receiver algorithm optimizes,
for all possible transmitted signals sj, the conditional
probabili ty Pr{ sj | x} . The vector which maximizes this
probabili ty, is given by:

i
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Hsxs �� minargˆ  (2)



In [1] it is shown that this detector realizes order N
receiver diversity, independent of the number of
transmitter antennas, M. If c is the number of
constellation points, there are cM different transmit
vectors sj. The maximum likelihood detector multiplies
sj by the known channel matrix and then calculates the
Euclidean distance from the received vector. Thus, the
complexity of the maximum likelihood decoder is
exponential in the number of transmit antennas, O(cM).

The question that we will address in this paper is how
we can reduce the complexity of the MLD algorithm,
without compromising its receiver performance.

III . Reduced complexity MLD

By rewriting (2) as
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where H j is the j-th column of H, and sij is the j-th
component of vector si, and if the components of ŝ
are estimated one after the order, it is seen that the
MLD algorithm is related to sequence estimation. The
MLD problem can be visualized as a tree, as shown in
figure 1 which depicts a simple decoding example for
M = 2. On the horizontal axis is t = 0, 1, 2, the
decoding step, while the vertical axis represents n(t),
which is defined as the distance between x and the
partial estimate of the received vector after t steps: ��� �tj

ijjtn
1

)( sHx (4)

In the figure, it is assumed that BPSK (Binary Phase
Shift Keying) modulation is used, i.e. sij �  { � 1� � 1} and
c = 2. This is why every node has two branches, i.e. 2
sub-nodes. In the example the maximum likelihood
estimate of s, which minimizes n(M), is (+1,� 1)T

The computational effort of an exhaustive evaluation of
the decoding tree can be reduced by using well known
maximum likelihood sequence estimation techniques,
such as Fano's algorithm, stack decoding or "retain K
best paths" ("K-best" for short). See [4] and [5] for an
overview of various decoding methods and their
relative performance and computational and storage
complexity.

At each step t, the K-best algorithm has a list of K
nodes in the tree. For each node in the list, the
algorithm calculates the norms of its sub-nodes
according to (4). Of the c� K resulting norms, the K best
are put in the list and the corresponding nodes become
the new survivors. The complexity of this algorithm is
linear in M. It has the additional advantage of a
convenient implementation since its processing time is
constant.

These algorithms only approximate a true maximum
likelihood detector. In the example of figure 1, the
1-best algorithm would find the correct s correctly.

However, if the branches of the tree would cross each
other, this algorithm would make a decoding error.

Intuitively it makes sense to make the algorithm greedy by
sorting the columns of H in descending order of their
norm. Thus, in the branches close to the root, the largest
strides are made, which makes the probabili ty that
branches cross further down the tree smaller. Hence, it is
expected that a K-best would introduce fewer errors.

Simulation results, comparing K-best decoding with
exhaustive decoding are given in section VI.

IV. Exact MLD: survivor algor ithm

We try to reduce the MLD receiver complexity without
resorting to approximation, by exploiting the N-
dimensional geometry of the problem as well as the
freedom of choosing the order in which to estimate the
components of s. The simplest algorithm (called Survivor)
finds, for a partial s estimate, of which only the first t
components (s1,…, st) are known, a best case and worst
case estimate of n(M), which is the distance between x and
the estimated receive vector.

In each node we have a partially estimated receive vector:� �� �t
j
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We will refer to y as the node location. An upper bound
on the distances from x  corresponding to all possible
values of the remaining components (st+1,…, sM) is when
all remaining H-columns (H t,…,HM� 1) are all aligned and
point exactly in the direction of x. The worst case distance
occurs when all remaining columns of are aligned but
point away from x, which gives a lower bound. The
distances between x and final estimated receive vector are
in the interval: ��� � Mtj
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The Survivor algorithm starts with received vector x,
computes node locations y for every possible value of s1

and computes the interval in (6). This is shown in figure 2.
The y vectors are H1 and ! H1, for s1 = +1 and ! 1,
respectively. The best case vector b1 has a length equal to
that of the remaining H columns, ||H2|| in this case, and is
pointing in the direction of x. The worst case vector w1 has
the same length, but is pointing opposite direction. The
worst and best case distances are equal to ||x ! b1|| and
||x ! w1||, and are calculated according to (6). The vectors b2

and w2 are the best and worst case vector for the second
node location, ! H1.

The algorithm continues with s2 and steps through all
components of s sequentially to construct the full
decoding tree. However, at each step t, nodes whose best
case distance is larger than the worst case distance of any
other node can be eliminated. All nodes in the sub-trees of
eliminated nodes need not be evaluated since they would
give a distance from x which can never be better than that
from the surviving nodes. This is il lustrated in figure 5,
which shows an example where at a particular step t, two



nodes can be eliminated. It is expected that non-
overlapping do occur so that only part of the node
needs to be evaluated, thus reducing coding
complexity. Note that the eventual complexity of this
method depends on the communication channel —
both the values of the elements of channel matrix H
and noise vector n.

V. QR survivor M LD

An advanced version of this algorithm, called QR1 is
based on the QR-decomposition. We apply a unitary
coordinate transform, to upper-triangularize H. It is
well-known that H can be factored as H = QR,
provided that H has rank M:

R = Q* " H (7)

Here R and H are both N # M matrices and Q* is an
N# N matrix. Basically, Q is an orthonormal basis of
the vector space spanned by H, and R is upper
triangular. Q can be obtained from H using Gram-
Schmidt orthogonalization, or equivalent, computation-
ally more stable methods involving a series of
Householder or Givens rotations [6]. Since Q is
unitary, Q's inverse is equal to its conjugate transpose
(Q* = Q$ 1). Each received x is transformed to
orthonormal coordinate system according to:

x' = Q* " x (8)

The problem is now represented in a coordinate system
where we can better bound the best case and worst case
distance. This is because the dimension of the columns
of R (i.e. H represented in the orthonormal system) is
reduced by one as the algorithms descends deeper into
the tree.

Consider an example for the case N = M. We assume
that the columns of H have been sorted according to
their lengths. Then Q is determined, inverted
(transposed and conjugated) and used to obtain R and
x'. R is upper triangular, and its columns are still sorted
according to their length, since multiplication by
unitary matrix Q* is a length-preserving. We start with
the leftmost columns of R (which has no zeroes) and
calculate n(1), for the c possible values of s1, according
to (4). The decision which paths survive is made as
with the Survivor algorithm.

For the next step, t = 2, we make use of the fact that the
remaining columns of R2,…,RM span a hyperplane of
dimension M% 1. Shift this plane by adding an offset  y.
Now we the best and worst case x' estimates must also
lie within this shifted hyperplane. The best case
estimate is now made by assuming that all remaining
Rj vectors point in the direction of the projection of x'
on the hyperplane, as opposed to the direction of x'
itself, as in the Survivor algorithm. The worst case
estimates are made by assuming that the remaining Rj

vectors point away from the projection of x' on the
hyperplane.

This principle is il lustrated in figure 3, which considers
the same example as in figure 2. The coordinate

transform, in this case is a rotation, which upper-
triangularizes R, so that R2 is horizontal. The receive
vector x has been rotated by the same angle, giving x'. The
y vectors after one step are R1 and % R1. The best case
estimates for the first y value, is b1, the projection of x' on
the hyperplane y + & R2. If we define direction vector z to
be the difference vector between the projection of x' and y,
then the best case vector is given by
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The "otherwise case" of this equation deals with the
situation where the sum of lengths of the remaining R
columns overshoots the projection of x'. The norm of b
gives the best case bound. w1 is the worst case vector,
which lies within the hyper plane, but points in the
opposite direction of b. Vectors b2 and w2 are the best and
worst case vectors for the second node location y.

A further refinement of this algorithm, called QR2, does
not simply look at the lengths of the remaining vectors,
but takes their direction into account. It projects the
remaining R onto direction vector z, in the direction of the
projection of x'.
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Since projections are shorted than the sum of lengths, as is
shown in figure 4, the best case intervals are tighter and a
further reduction in the number of evaluated nodes can be
expected. Note that formula (10) covers the case of real
valued vectors, where the absolute value of the inner
product ensures that b is pointing in the same direction as
z. Without proof we state that if p = Rj

*; z is a complex
inner product that we must use p if Re(p) > 0 and < p
otherwise.

VI. Performance Evaluation

We performed simulation for several systems with an
equal number of transmit and receive antennas, ranging
from 1 to 8. The transmit vector was BPSK modulated
(si =  { +1,< 1} ).  The elements of the channel matrix have a
complex Gaussian distribution with mean zero and
E{ |H ij|

2}  = 1. For each transmitted symbol, a new random
channel is generated.

If the noise on each receive antenna is equal to > 2
, i.e.

E{ ni
2}  = > 2, and the total transmitted power is 1, i.e. the

power per transmit antenna is given by ||si
2|| = 1/M, then

the received power per receive antenna is equal to 1 and
the SNR per receive antenna is given by:

SNR = > ? 2 (11)

Figure 6 shows the symbol error probabili ty versus the
signal to noise ratio for different decoding algorithms, in a
system with N = M = 8 antennas. Clearly, the maximum



li kelihood algorithm (whether implemented using the
survivor, QR1 or QR2 algorithm) achieves optimal
performance. The K-best algorithm approximates this
performance for small signal to noise ratio. For larger
signal to noise ratio, the symbol error rate starts to level
off . Of the approximate algorithms, the K-best
algorithm performs best. The 5-best algorithm achieves
a SER of 10@ 4, the 3-best algorithm has a SER which is
an more order of magnitude higher. The performance
of the myopic (1-best) and greedy algorithms is too
poor to be practically useful in an 8-antenna system.

Figure 7 graphs the complexity in terms of number of
evaluated nodes. The approximate algorithms that we
considered all have a linear complexity in the number
of transmit antennas M. The exact algorithms are all
exponential in complexity, as is expected [7].

The Survivor algorithm is not very efficient in reducing
complexity. A small reduction in complexity is
achieved for small M (17% at most). The gain
disappears for larger M larger than 5. The QR1 and
QR2 algorithms do better , although is clear from the
figure that their advantage starts to disappear as M
becomes larger than 7. For a small number of antennas
(less than 4) the QR1 and 2 methods are better than the
approximate algorithms. For larger numbers, the
approximate algorithms have less node evaluations.

Obviously the QR methods involve more complex
operations, and it remains to be investigated whether
the additional complexity expense for the QR
factorization (which must be done after channel
training) and the vector projections, does not outweigh
the advantage of a smaller number of node evaluations.
The K-best method is attractive for larger number of
antennae, although value of k, must be increased with
the number of transmit antenna to achieve satisfactory
performance.

Figure 8 depicts the SER error floor, i.e. the
performance of the various algorithms in the absence
of noise for 2,3 up to 8 transmit and receive antennas.
The graph shows that the myopic (1-best) algorithm
has hardly practical value. Sorting H columns before
applying the myopic algorithm (greedy), yields
acceptable performance for 2 antennas. The
performance quickly deteriorates for larger number of
antennas. The K-best algorithm seems to perform well
for a number of antennas that is K+1 to K+2. The MLD
algorithms are not shown since their error floor is zero.

VII . Conclusions

The order N diversity receiver makes it possible, for a
given single antenna system, to increase the bit rate by
in increasing the number of transmit antennas. We
maintain the same delay spread tolerance and signal
bandwidth, while the reduction in the link budget,
resulting from the fact that the available transmit
energy must be shared among the transmit antennas,
can be compensated by increasing the number of
receive antenna. This opens the door to high-speed
wireless systems which change physical limitations on

link budget, delay spread, bandwidth, to practical
limitations: cost of radio circuitry and signal processing
logic. This paper discussed reduction in complexity of the
latter complexity of the latter. The applicabili ty of the
algorithms presented in this paper extends to the generic
multi-user detection problem.
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Figure 1: Maximum li kelihood sequential decoding
tree. On the vertical axis is the distance between x and
H times the par tially decoded s, on the hor izontal axis
the decoding step. H i denotes the i-th column of H. The
correct MLD solution is s = (+1,AA 1).
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Figure 2: Example of Survivor decoding, M = N = 2, x
and H are real, x uses BPSK modulation.
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Figure 3: Example of QR survivor decoding, M = N = 2
x and H are real. Rj and x', are rotated channel matr ix
columns and receive vector , respectively. The points b
and w denote best and worst case estimates,
respectively. In this example, the best case estimates



coincide with the projection of x' on the R2

hyperplanes.
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Figure 4: Difference between QR-Survivor decoding
methods 1 and 2. Algor ithm QR1 normalizes
direction vector z and multiplies by the total length
of the remaining R columns, while algor ithm QR2
uses the projections of the remaining R columns on
the direction vector .
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Figure 5: Node Distance versus node number,
showing error intervals after par tial decoding. The
dashed line shows the best worst case distance. All
nodes with a worst case distance, crossed out in this
figure, are to be eliminated.
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Figure 6: Bit and Symbol Err or Rate versus Signal
to noise ratio (SNR) for (a) greedy, (b) myopic, (cK)
K-best (d) exhaustive MLD for an N = M = 8 system.
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Figure 7: Node evaluation complexity versus N, M
(number of TX, RX antennae), no noise, for (a)

greedy, (b) myopic, (ck) K-best (d) Survivor , (e) QR1,
(f) QR2 and (g) exhaustive.
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Figure 8: SER, floor versus N, M (number of TX, RX
antennae) for (a) greedy, (b) myopic, (cK) K-best, no
noise.
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